Machine Learning Automation with TPOT: Build, validate, and deploy fully automated machine learning models with Python
暫譯: 使用 TPOT 的機器學習自動化:使用 Python 構建、驗證和部署完全自動化的機器學習模型
Radečic, Dario
- 出版商: Packt Publishing
- 出版日期: 2021-05-07
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 270
- 裝訂: Quality Paper - also called trade paper
- ISBN: 180056788X
- ISBN-13: 9781800567887
-
相關分類:
Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
商品描述
Discover how TPOT can be used to handle automation in machine learning and explore the different types of tasks that TPOT can automate
Key Features:
- Understand parallelism and how to achieve it in Python.
- Learn how to use neurons, layers, and activation functions and structure an artificial neural network.
- Tune TPOT models to ensure optimum performance on previously unseen data.
Book Description:
The automation of machine learning tasks allows developers more time to focus on the usability and reactivity of the software powered by machine learning models. TPOT is a Python automated machine learning tool used for optimizing machine learning pipelines using genetic programming. Automating machine learning with TPOT enables individuals and companies to develop production-ready machine learning models cheaper and faster than with traditional methods.
With this practical guide to AutoML, developers working with Python on machine learning tasks will be able to put their knowledge to work and become productive quickly. You'll adopt a hands-on approach to learning the implementation of AutoML and associated methodologies. Complete with step-by-step explanations of essential concepts, practical examples, and self-assessment questions, this book will show you how to build automated classification and regression models and compare their performance to custom-built models. As you advance, you'll also develop state-of-the-art models using only a couple of lines of code and see how those models outperform all of your previous models on the same datasets.
By the end of this book, you'll have gained the confidence to implement AutoML techniques in your organization on a production level.
What You Will Learn:
- Get to grips with building automated machine learning models
- Build classification and regression models with impressive accuracy in a short time
- Develop neural network classifiers with AutoML techniques
- Compare AutoML models with traditional, manually developed models on the same datasets
- Create robust, production-ready models
- Evaluate automated classification models based on metrics such as accuracy, recall, precision, and f1-score
- Get hands-on with deployment using Flask-RESTful on localhost
Who this book is for:
Data scientists, data analysts, and software developers who are new to machine learning and want to use it in their applications will find this book useful. This book is also for business users looking to automate business tasks with machine learning. Working knowledge of the Python programming language and beginner-level understanding of machine learning are necessary to get started.
商品描述(中文翻譯)
探索 TPOT 如何用於處理機器學習中的自動化,並探索 TPOT 可以自動化的不同類型任務
主要特點:
- 了解平行處理及如何在 Python 中實現它。
- 學習如何使用神經元、層和激活函數,並構建人工神經網絡。
- 調整 TPOT 模型,以確保在未見過的數據上達到最佳性能。
書籍描述:
機器學習任務的自動化使開發人員能夠有更多時間專注於由機器學習模型驅動的軟體的可用性和反應性。TPOT 是一個 Python 自動化機器學習工具,用於通過遺傳編程優化機器學習管道。使用 TPOT 自動化機器學習使個人和公司能夠以比傳統方法更便宜和更快的速度開發生產就緒的機器學習模型。
這本實用的 AutoML 指南將幫助從事機器學習任務的 Python 開發人員能夠將他們的知識付諸實踐,並迅速提高生產力。您將採用實踐的方法來學習 AutoML 的實施及相關方法論。這本書包含了關鍵概念的逐步解釋、實用範例和自我評估問題,將向您展示如何構建自動化的分類和回歸模型,並將其性能與自定義構建的模型進行比較。隨著進展,您還將使用僅幾行代碼開發最先進的模型,並看到這些模型在相同數據集上超越您之前的所有模型。
在本書結束時,您將獲得在生產層面上在您的組織中實施 AutoML 技術的信心。
您將學到的內容:
- 掌握構建自動化機器學習模型的技巧
- 在短時間內構建具有驚人準確度的分類和回歸模型
- 使用 AutoML 技術開發神經網絡分類器
- 在相同數據集上將 AutoML 模型與傳統手動開發的模型進行比較
- 創建穩健的生產就緒模型
- 根據準確率、召回率、精確率和 F1 分數等指標評估自動化分類模型
- 在本地主機上使用 Flask-RESTful 進行部署的實踐操作
本書適合誰:
對機器學習感興趣並希望在其應用中使用的數據科學家、數據分析師和軟體開發人員將會發現這本書非常有用。本書也適合希望利用機器學習自動化業務任務的商業用戶。開始之前需要具備 Python 程式語言的工作知識和初級的機器學習理解。