Applied Machine Learning and AI for Engineers: Solve Business Problems That Can't Be Solved Algorithmically
暫譯: 工程師的應用機器學習與人工智慧:解決無法用演算法解決的商業問題
Prosise, Jeff
- 出版商: O'Reilly
- 出版日期: 2022-12-20
- 定價: $2,780
- 售價: 8.8 折 $2,446 (限時優惠至 2025-02-02)
- 語言: 英文
- 頁數: 425
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492098051
- ISBN-13: 9781492098058
-
相關分類:
人工智慧、Machine Learning、Algorithms-data-structures
立即出貨 (庫存=1)
相關主題
商品描述
While many introductory guides to AI are calculus books in disguise, this one mostly eschews the math. Instead, author Jeff Prosise helps engineers and software developers build an intuitive understanding of AI to solve business problems. Need to create a system to detect the sounds of illegal logging in the rainforest, analyze text for sentiment, or predict early failures in rotating machinery? This practical book teaches you the skills necessary to put AI and machine learning to work at your company.
Applied Machine Learning and AI for Engineers provides examples and illustrations from the AI and ML course Prosise teaches at companies and research institutions worldwide. There's no fluff and no scary equations--just a fast start for engineers and software developers, complete with hands-on examples.
This book helps you:
- Learn what machine learning and deep learning are and what they can accomplish
- Understand how popular learning algorithms work and when to apply them
- Build machine learning models in Python with Scikit-Learn, and neural networks with Keras and TensorFlow
- Train and score regression models and binary and multiclass classification models
- Build facial recognition models and object detection models
- Build language models that respond to natural-language queries and translate text to other languages
- Use Cognitive Services to infuse AI into the apps that you write
商品描述(中文翻譯)
雖然許多人工智慧的入門指南看似是微積分書籍,但這本書大多避免了數學的使用。相反地,作者 Jeff Prosise 幫助工程師和軟體開發人員建立對人工智慧的直觀理解,以解決商業問題。需要創建一個系統來檢測熱帶雨林中的非法伐木聲音、分析文本情感,或預測旋轉機械的早期故障嗎?這本實用的書籍教你在公司中運用人工智慧和機器學習所需的技能。
應用機器學習與人工智慧:工程師的實務指南 提供了來自 Prosise 在全球公司和研究機構教授的人工智慧與機器學習課程的範例和插圖。書中沒有多餘的內容,也沒有可怕的方程式——只有工程師和軟體開發人員的快速入門,並附有實作範例。
這本書幫助你:
- 了解機器學習和深度學習是什麼,以及它們能達成的目標
- 理解流行的學習演算法如何運作以及何時應用它們
- 使用 Scikit-Learn 在 Python 中建立機器學習模型,並使用 Keras 和 TensorFlow 建立神經網路
- 訓練和評分回歸模型以及二元和多類別分類模型
- 建立人臉識別模型和物體檢測模型
- 建立能夠回應自然語言查詢的語言模型,並將文本翻譯成其他語言
- 使用 Cognitive Services 將人工智慧融入你所撰寫的應用程式中