Hands-On Explainable AI (XAI) with Python (Paperback)
暫譯: 實作可解釋的人工智慧 (XAI) 與 Python (平裝本)

Rothman, Denis

買這商品的人也買了...

商品描述

Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces.

Key Features

  • Learn explainable AI tools and techniques to process trustworthy AI results
  • Understand how to detect, handle, and avoid common issues with AI ethics and bias
  • Integrate fair AI into popular apps and reporting tools to deliver business value using Python and associated tools

Book Description

Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex.
Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications.
You will build XAI solutions in Python, TensorFlow 2, Google Cloud's XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle.

You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces.
By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI.

What you will learn

  • Plan for XAI through the different stages of the machine learning life cycle
  • Estimate the strengths and weaknesses of popular open-source XAI applications
  • Examine how to detect and handle bias issues in machine learning data
  • Review ethics considerations and tools to address common problems in machine learning data
  • Share XAI design and visualization best practices
  • Integrate explainable AI results using Python models
  • Use XAI toolkits for Python in machine learning life cycles to solve business problems

Who this book is for
This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book.

Some of the potential readers of this book include:

  1. Professionals who already use Python for as data science, machine learning, research, and analysis
  2. Data analysts and data scientists who want an introduction into explainable AI tools and techniques
  3. AI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications

商品描述(中文翻譯)

解決您 AI 應用中的黑箱模型,使其公平、值得信賴且安全。熟悉基本原則和工具,將可解釋的 AI (XAI) 部署到您的應用和報告介面中。

主要特點

- 學習可解釋的 AI 工具和技術,以處理值得信賴的 AI 結果
- 了解如何檢測、處理和避免 AI 倫理和偏見的常見問題
- 將公平的 AI 整合到流行的應用和報告工具中,使用 Python 和相關工具提供商業價值

書籍描述

有效地將 AI 洞察轉化為商業利益相關者所需的計劃、設計和可視化選擇。描述問題、模型以及變數之間的關係和其發現通常是微妙、驚人且技術上複雜的。
《Hands-On Explainable AI (XAI) with Python》將讓您參與特定的實作機器學習 Python 專案,這些專案經過策略性安排,以增強您對 AI 結果分析的理解。您將建立模型,通過可視化解釋結果,並整合 XAI 報告工具和不同應用。
您將在 Python、TensorFlow 2、Google Cloud 的 XAI 平台、Google Colaboratory 和其他框架中構建 XAI 解決方案,以打開機器學習模型的黑箱。這本書將介紹幾個可用於整個機器學習專案生命週期的開源 XAI 工具。

您將學習如何探索機器學習模型結果,檢視關鍵影響變數及變數關係,檢測和處理偏見和倫理問題,並使用 Python 整合預測,同時支持將機器學習模型的可視化納入用戶可解釋的介面中。
在這本 AI 書籍結束時,您將對 XAI 的核心概念有深入的理解。

您將學習的內容

- 在機器學習生命週期的不同階段規劃 XAI
- 評估流行的開源 XAI 應用的優缺點
- 檢查如何檢測和處理機器學習數據中的偏見問題
- 檢視倫理考量和工具,以解決機器學習數據中的常見問題
- 分享 XAI 設計和可視化的最佳實踐
- 使用 Python 模型整合可解釋的 AI 結果
- 在機器學習生命週期中使用 Python 的 XAI 工具包來解決商業問題

本書適合誰閱讀
這本書並不是 Python 程式設計或機器學習概念的入門書。您必須具備一些基礎知識和/或對機器學習庫(如 scikit-learn)的經驗,以充分利用這本書。

本書的潛在讀者包括:

- 已經使用 Python 進行數據科學、機器學習、研究和分析的專業人士
- 希望了解可解釋的 AI 工具和技術的數據分析師和數據科學家
- 必須面對 AI 可解釋性在其應用接受階段的合約和法律義務的 AI 專案經理

作者簡介

Denis Rothman graduated from Sorbonne University and Paris-Diderot University, writing one of the very first word2vector embedding solutions. He began his career authoring one of the first AI cognitive natural language processing (NLP) chatbots applied as a language teacher for Moët et Chandon and other companies. He has also authored an AI resource optimizer for IBM and apparel producers. He then authored an advanced planning and scheduling (APS) solution that is used worldwide. Denis is an expert in explainable AI (XAI), having added interpretable mandatory, acceptance-based explanation data and explanation interfaces to the solutions implemented for major corporate aerospace, apparel, and supply chain projects.

作者簡介(中文翻譯)

丹尼斯·羅斯曼畢業於索邦大學和巴黎第七大學,撰寫了最早的 word2vector 嵌入解決方案之一。他的職業生涯始於為 Moët et Chandon 和其他公司開發的第一個 AI 認知自然語言處理 (NLP) 聊天機器人,該聊天機器人被應用作為語言教師。他還為 IBM 和服裝生產商撰寫了一個 AI 資源優化器。隨後,他撰寫了一個全球使用的先進計劃與排程 (APS) 解決方案。丹尼斯是可解釋 AI (XAI) 的專家,為主要的企業航空、服裝和供應鏈項目實施的解決方案添加了可解釋的強制性、基於接受的解釋數據和解釋介面。

目錄大綱

  1. Explaining Artificial Intelligence with Python
  2. White Box XAI for AI Bias and Ethics
  3. Explaining Machine Learning with Facets
  4. Microsoft Azure Machine Learning Model Interpretability with SHAP
  5. Building an Explainable AI Solution from Scratch
  6. AI Fairness with Google's What-If Tool (WIT)
  7. A Python Client for Explainable AI Chatbots
  8. Local Interpretable Model-Agnostic Explanations (LIME)
  9. The Counterfactual Explanations Method
  10. Contrastive XAI
  11. Anchors XAI
  12. Cognitive XAI

目錄大綱(中文翻譯)


  1. Explaining Artificial Intelligence with Python

  2. White Box XAI for AI Bias and Ethics

  3. Explaining Machine Learning with Facets

  4. Microsoft Azure Machine Learning Model Interpretability with SHAP

  5. Building an Explainable AI Solution from Scratch

  6. AI Fairness with Google's What-If Tool (WIT)

  7. A Python Client for Explainable AI Chatbots

  8. Local Interpretable Model-Agnostic Explanations (LIME)

  9. The Counterfactual Explanations Method

  10. Contrastive XAI

  11. Anchors XAI

  12. Cognitive XAI