Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI
暫譯: 企業中的負責任人工智慧:針對可解釋、可審計及安全模型的實用人工智慧風險管理,與超大規模雲端服務及 Azure OpenAI 一同探討

Masood, Adnan, Dawe, Heather

  • 出版商: Packt Publishing
  • 出版日期: 2023-07-31
  • 售價: $1,860
  • 貴賓價: 9.5$1,767
  • 語言: 英文
  • 頁數: 314
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1803230525
  • ISBN-13: 9781803230528
  • 相關分類: Microsoft Azure人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Responsible AI in the Enterprise is a comprehensive guide to ethical, transparent, and compliant AI systems, covering key concepts, tools, and techniques for creating fair, robust accountable machine learning models.

Key Features

  • Learn Ethical AI Principles, Frameworks, & Governance
  • Understand the concepts of Fairness assessment & bias mitigation
  • Get ot grips with Explainable AI & transparency

Book Description

Responsible AI in the Enterprise offers a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts like explainable, safe, ethical, robust, transparent, auditable, and interpretable machine learning models, this book equips developers with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Readers will gain an in-depth understanding of FairLearn and InterpretML, as well as other tools like Google's What-If Tool, ML Fairness Gym, IBM's AI 360 Fairness tool, Aequitas, and FairLearn. The book covers various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance standards recommendations. It provides practical insights on how to use AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Readers will explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, and learn how to use FairLearn for fairness assessment and bias mitigation. By the end of this book you will ge to grips with tools and techniques available to create transparent and accountable machine learning models.

What you will learn

  • Understand the importance of ethical considerations in AI and recognize the significance of model governance standards in ensuring responsible AI practices.
  • Detect and mitigate biases in data and algorithms, and appreciate the need for fairness in AI decision-making.
  • Recognize the importance of accountability regulations in promoting ethical AI, and understand the impact of AI on society.
  • Analyze model interpretability methods and tools and apply them to understand AI models' decision-making processes.
  • Evaluate AI compliance standards and identify their role in ensuring trustworthy AI.
  • Utilize AI governance frameworks to develop a comprehensive approach to implementing responsible AI practices.
  • Utilize cloud AI explainability toolkits to build transparency and accountability in AI models.
  • Understand the principles of responsible AI in AWS, GCP, and Azure, and recognize their role in promoting ethical AI practices.

Who This Book Is For

This book is essential for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

商品描述(中文翻譯)

負責任的企業人工智慧是一本全面指南,涵蓋了倫理、透明和合規的人工智慧系統,介紹了創建公平、穩健且可負責的機器學習模型的關鍵概念、工具和技術。

主要特點

- 學習倫理人工智慧原則、框架與治理
- 理解公平性評估與偏見緩解的概念
- 熟悉可解釋的人工智慧與透明度

書籍描述

《負責任的企業人工智慧》提供了在組織中實施倫理、透明和合規的人工智慧系統的全面指南。該書專注於理解可解釋、安全、倫理、穩健、透明、可審計和可解釋的機器學習模型等關鍵概念,為開發人員提供技術和算法,以解決偏見、公平性和模型治理等複雜問題。讀者將深入了解 FairLearn 和 InterpretML,以及其他工具如 Google 的 What-If Tool、ML Fairness Gym、IBM 的 AI 360 Fairness 工具、Aequitas 和 FairLearn。本書涵蓋了負責任的人工智慧的各個方面,包括模型可解釋性、模型漂移的監控和管理,以及合規標準的建議。它提供了如何使用人工智慧治理工具來確保公平性、偏見緩解、可解釋性、隱私合規和企業環境中的隱私的實用見解。讀者將探索主要雲端人工智慧提供商如 IBM、Amazon、Google 和 Microsoft 提供的可解釋性工具包和公平性措施,並學習如何使用 FairLearn 進行公平性評估和偏見緩解。通過本書的學習,您將掌握創建透明和可負責的機器學習模型所需的工具和技術。

您將學到的內容

- 理解倫理考量在人工智慧中的重要性,並認識模型治理標準在確保負責任的人工智慧實踐中的意義。
- 偵測和緩解數據和算法中的偏見,並認識到人工智慧決策中公平性的重要性。
- 認識到問責規範在促進倫理人工智慧中的重要性,並理解人工智慧對社會的影響。
- 分析模型可解釋性的方法和工具,並應用它們來理解人工智慧模型的決策過程。
- 評估人工智慧合規標準,並識別其在確保可信任的人工智慧中的角色。
- 利用人工智慧治理框架來制定全面的負責任人工智慧實踐實施方法。
- 利用雲端人工智慧可解釋性工具包來建立人工智慧模型的透明度和問責性。
- 理解 AWS、GCP 和 Azure 中負責任的人工智慧原則,並認識它們在促進倫理人工智慧實踐中的角色。

本書適合對象

本書對於數據科學家、機器學習工程師、人工智慧從業者、IT 專業人員、商業利益相關者和負責在其組織中實施人工智慧模型的人工智慧倫理學家來說是必不可少的。

目錄大綱

  1. A Primer on Explainable and Ethical AI
  2. Algorithms Gone Wild - Bias's Greatest Hits
  3. Opening the Algorithmic Blackbox
  4. Operationalizing Model Monitoring
  5. Model Governance - Audit, and Compliance Standards & Recommendations
  6. Enterprise Starter Kit for Fairness, Accountability and Transparency
  7. Interpretability Toolkits and Fairness Measures – AWS, GCP, Azure, and AIF 360
  8. Fairness in AI System with Microsoft FairLearn
  9. Fairness assessment and bias mitigationFairLearn and Responsible AI Toolbox
  10. Foundation Models, LLMs, and Azure Open AI: Navigating the Landscape of Responsible AI

目錄大綱(中文翻譯)


  1. A Primer on Explainable and Ethical AI

  2. Algorithms Gone Wild - Bias's Greatest Hits

  3. Opening the Algorithmic Blackbox

  4. Operationalizing Model Monitoring

  5. Model Governance - Audit, and Compliance Standards & Recommendations

  6. Enterprise Starter Kit for Fairness, Accountability and Transparency

  7. Interpretability Toolkits and Fairness Measures – AWS, GCP, Azure, and AIF 360

  8. Fairness in AI System with Microsoft FairLearn

  9. Fairness assessment and bias mitigationFairLearn and Responsible AI Toolbox

  10. Foundation Models, LLMs, and Azure Open AI: Navigating the Landscape of Responsible AI