Introduction to Data Governance for Machine Learning Systems: Fundamental Principles, Critical Practices, and Future Trends
Nandan Prasad, Aditya
- 出版商: Apress
- 出版日期: 2024-12-30
- 售價: $1,570
- 貴賓價: 9.5 折 $1,492
- 語言: 英文
- 頁數: 950
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798868810220
- ISBN-13: 9798868810220
-
相關分類:
Machine Learning
尚未上市,無法訂購
相關主題
商品描述
This book is the first comprehensive guide to the intersection of data governance and machine learning (ML) projects. As ML applications proliferate, the quality, reliability, and ethical use of data is central to their success, which gives ML data governance unprecedented significance. However, adapting data governance principles to ML systems presents unique, complex challenges. Author Aditya Nandan Prasad equips you with the knowledge and tools needed to navigate this dynamic landscape effectively. Through this guide, you will learn to implement robust and responsible data governance practices, ensuring the development of sustainable, ethical, and future-proofed AI applications.
The book begins by covering fundamental principles and practices of underlying ML applications and data governance before diving into the unique challenges and opportunities at play when adapting data governance theory and practice to ML projects, including establishing governance frameworks, ensuring data quality and interpretability, preprocessing, and the ethical implications of ML algorithms and techniques, from mitigating bias in AI systems to the importance of transparency in models.
Monitoring and maintaining ML systems performance is also covered in detail, along with regulatory compliance and risk management considerations. Moreover, the book explores strategies for fostering a data-driven culture within organizations and offers guidance on change management to ensure successful adoption of data governance initiatives. Looking ahead, the book examines future trends and emerging challenges in ML data governance, such as Explainable AI (XAI) and the increasing complexity of data.
What You Will Learn
- Comprehensive understanding of machine learning and data governance, including fundamental principles, critical practices, and emerging challenges
- Navigating the complexities of managing data effectively within the context of machine learning projects
- Practical strategies and best practices for implementing effective data governance in machine learning projects
- Key aspects such as data quality, privacy, security, and ethical considerations, ensuring responsible and effective use of data
- Preparation for the evolving landscape of ML data governance with a focus on future trends and emerging challenges in the rapidly evolving field of AI and machine learning
Who This Book Is For
Data professionals, including data scientists, data engineers, AI developers, or data governance specialists, as well as managers or decision makers looking to implement or improve data governance practices for machine learning projects
商品描述(中文翻譯)
這本書是關於數據治理與機器學習(ML)專案交集的第一本綜合指南。隨著機器學習應用的迅速增長,數據的質量、可靠性和倫理使用對其成功至關重要,這使得機器學習數據治理具有前所未有的重要性。然而,將數據治理原則應用於機器學習系統面臨獨特且複雜的挑戰。作者 Aditya Nandan Prasad 為您提供了在這個動態環境中有效導航所需的知識和工具。通過這本指南,您將學會實施穩健且負責任的數據治理實踐,確保可持續、倫理且未來可持續的人工智慧應用的發展。
本書首先涵蓋了機器學習應用和數據治理的基本原則和實踐,然後深入探討將數據治理理論和實踐應用於機器學習專案時所面臨的獨特挑戰和機會,包括建立治理框架、確保數據質量和可解釋性、預處理,以及機器學習算法和技術的倫理影響,從減少人工智慧系統中的偏見到模型透明度的重要性。
本書還詳細介紹了監控和維護機器學習系統性能的內容,以及合規性和風險管理的考量。此外,本書探討了在組織內培養數據驅動文化的策略,並提供變更管理的指導,以確保數據治理倡議的成功採納。展望未來,本書檢視了機器學習數據治理中的未來趨勢和新興挑戰,例如可解釋的人工智慧(XAI)和數據日益增長的複雜性。
您將學到的內容包括:
- 對機器學習和數據治理的全面理解,包括基本原則、關鍵實踐和新興挑戰
- 在機器學習專案中有效管理數據的複雜性
- 在機器學習專案中實施有效數據治理的實用策略和最佳實踐
- 確保負責任和有效使用數據的關鍵方面,如數據質量、隱私、安全和倫理考量
- 為不斷演變的機器學習數據治理環境做好準備,重點關注人工智慧和機器學習快速發展領域中的未來趨勢和新興挑戰
本書適合對象:
數據專業人士,包括數據科學家、數據工程師、人工智慧開發者或數據治理專家,以及希望為機器學習專案實施或改善數據治理實踐的管理者或決策者。
作者簡介
Aditya Nandan Prasad is an experienced analytics leader with a strong track record in driving business intelligence and recommendations for operational and strategic decision making. He excels at leading and developing high-performing teams and collaborating to identify growth strategies. With a passion for complex data analysis and a tool-agnostic approach, he brings a data-driven perspective to solving business problems. Aditya has successfully led data migration projects and implemented innovative analytics solutions to support strategic business initiatives, and his experience in leading and collaborating with cross-functional teams has helped him become an expert on implementing data governance practices within organizations.
作者簡介(中文翻譯)
Aditya Nandan Prasad 是一位經驗豐富的分析領導者,擁有推動商業智慧和為操作及策略決策提供建議的良好紀錄。他擅長領導和發展高效能團隊,並合作識別成長策略。對於複雜數據分析充滿熱情,並採取工具無關的方式,他為解決商業問題帶來數據驅動的視角。Aditya 成功主導了數據遷移專案,並實施創新的分析解決方案以支持策略性商業計畫,他在領導和與跨功能團隊合作方面的經驗,使他成為在組織內實施數據治理實踐的專家。