Mastering Python - Second Edition: Write powerful and efficient code using the full range of Python's capabilities
暫譯: 精通 Python - 第二版:利用 Python 的全部功能編寫強大且高效的程式碼
Hattem, Rick Van
- 出版商: Packt Publishing
- 出版日期: 2022-05-20
- 售價: $1,860
- 貴賓價: 9.5 折 $1,767
- 語言: 英文
- 頁數: 710
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1800207727
- ISBN-13: 9781800207721
-
相關分類:
Python、程式語言
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,450$1,378 -
$958深度學習
-
$2,300$2,185 -
$480$379 -
$352機器學習:使用 OpenCV 和 Python 進行智能圖像處理 (Machine Learning for OpenCV)
-
$420$315 -
$480$379 -
$1,610$1,530 -
$1,827Introducing Python: Modern Computing in Simple Packages, 2/e (Paperback)
-
$297OpenCV 輕松入門:面向 Python
-
$352CUDA與OpenCV並行圖像處理實戰
-
$990$782 -
$1,550$1,519 -
$2,034Linux Bible, 10/e (Paperback)
-
$403基於 Google 雲平臺的機器學習和深度學習入門
-
$1,680$1,646 -
$3,600$3,420 -
$1,488Modern CMake for C++: Discover a better approach to building, testing, and packaging your software (Paperback)
-
$580$458 -
$3,340$3,173 -
$1,480$1,450 -
$1,360$1,333 -
$820$647 -
$2,150$2,107 -
$699$552
商品描述
Use advanced features of Python to write high-quality, readable code and packages
Key Features
- Extensively updated for Python 3.10 with new chapters on design patterns, scientific programming, machine learning, and interactive Python
- Shape your scripts using key concepts like concurrency, performance optimization, asyncio, and multiprocessing
- Learn how advanced Python features fit together to produce maintainable code
Book Description
Even if you find writing Python code easy, writing code that is efficient, maintainable, and reusable is not so straightforward. Many of Python's capabilities are underutilized even by more experienced programmers. Mastering Python, Second Edition, is an authoritative guide to understanding advanced Python programming so you can write the highest quality code. This new edition has been extensively revised and updated with exercises, four new chapters and updates up to Python 3.10.
Revisit important basics, including Pythonic style and syntax and functional programming. Avoid common mistakes made by programmers of all experience levels. Make smart decisions about the best testing and debugging tools to use, optimize your code's performance across multiple machines and Python versions, and deploy often-forgotten Python features to your advantage. Get fully up to speed with asyncio and stretch the language even further by accessing C functions with simple Python calls. Finally, turn your new-and-improved code into packages and share them with the wider Python community.
If you are a Python programmer wanting to improve your code quality and readability, this Python book will make you confident in writing high-quality scripts and taking on bigger challenges
What you will learn
- Write beautiful Pythonic code and avoid common Python coding mistakes
- Apply the power of decorators, generators, coroutines, and metaclasses
- Use different testing systems like pytest, unittest, and doctest
- Track and optimize application performance for both memory and CPU usage
- Debug your applications with PDB, Werkzeug, and faulthandler
- Improve your performance through asyncio, multiprocessing, and distributed computing
- Explore popular libraries like Dask, NumPy, SciPy, pandas, TensorFlow, and scikit-learn
- Extend Python's capabilities with C/C++ libraries and system calls
Who this book is for
This book will benefit more experienced Python programmers who wish to upskill, serving as a reference for best practices and some of the more intricate Python techniques. Even if you have been using Python for years, chances are that you haven't yet encountered every topic discussed in this book. A good understanding of Python programming is necessary
商品描述(中文翻譯)
使用 Python 的進階功能來編寫高品質、可讀性強的程式碼和套件
主要特點
- 針對 Python 3.10 進行了廣泛更新,新增了有關設計模式、科學程式設計、機器學習和互動式 Python 的章節
- 使用關鍵概念如併發、性能優化、asyncio 和多處理來塑造您的腳本
- 學習進階 Python 功能如何協同工作以產生可維護的程式碼
書籍描述
即使您覺得編寫 Python 程式碼很簡單,編寫高效、可維護和可重用的程式碼卻並不那麼簡單。即使是經驗豐富的程式設計師,許多 Python 的功能也未被充分利用。《精通 Python(第二版)》是一本權威指南,幫助您理解進階 Python 程式設計,以便編寫最高品質的程式碼。這一新版經過廣泛修訂和更新,包含練習題、四個新章節以及更新至 Python 3.10。
重溫重要的基礎知識,包括 Pythonic 風格和語法以及函數式程式設計。避免所有經驗水平的程式設計師常犯的錯誤。明智地選擇最佳的測試和除錯工具,優化您的程式碼在多台機器和 Python 版本上的性能,並利用經常被忽視的 Python 功能。充分掌握 asyncio,並通過簡單的 Python 調用訪問 C 函數,進一步擴展語言的能力。最後,將您新改進的程式碼轉換為套件,並與更廣泛的 Python 社群分享。
如果您是一位希望提高程式碼質量和可讀性的 Python 程式設計師,這本 Python 書籍將使您在編寫高品質腳本和接受更大挑戰時充滿信心。
您將學到的內容
- 編寫美觀的 Pythonic 程式碼,避免常見的 Python 編碼錯誤
- 應用裝飾器、生成器、協程和元類的強大功能
- 使用不同的測試系統,如 pytest、unittest 和 doctest
- 追蹤和優化應用程式的性能,包括記憶體和 CPU 使用率
- 使用 PDB、Werkzeug 和 faulthandler 除錯您的應用程式
- 通過 asyncio、多處理和分散式計算來提高性能
- 探索流行的庫,如 Dask、NumPy、SciPy、pandas、TensorFlow 和 scikit-learn
- 使用 C/C++ 庫和系統調用擴展 Python 的功能
本書適合誰
這本書將使希望提升技能的經驗豐富的 Python 程式設計師受益,作為最佳實踐和一些更複雜的 Python 技術的參考。即使您已經使用 Python 多年,您也可能尚未遇到本書中討論的每個主題。對 Python 程式設計有良好的理解是必要的。
目錄大綱
1. Getting Started – One Environment per Project
2. Interactive Python Interpreters
3. Pythonic Syntax and Common Pitfalls
4. Pythonic Design Patterns
5. Functional Programming – Readability Versus Brevity
6. Decorators – Enabling Code Reuse by Decorating
7. Generators and Coroutines – Infinity, One Step at a Time
8. Metaclasses – Making Classes (Not Instances) Smarter
9. Documentation – How to Use Sphinx and reStructuredText
10. Testing and Logging – Preparing for Bugs
11. Debugging – Solving the Bugs
12. Performance – Tracking and Reducing Your Memory and CPU Usage
13. asyncio – Multithreading without Threads
14. Multiprocessing – When a Single CPU Core Is Not Enough
15. Scientific Python and Plotting
16. Artificial Intelligence
17. Extensions in C/C++, System Calls, and C/C++ Libraries
18. Packaging – Creating Your Own Libraries or Applications
目錄大綱(中文翻譯)
1. Getting Started – One Environment per Project
2. Interactive Python Interpreters
3. Pythonic Syntax and Common Pitfalls
4. Pythonic Design Patterns
5. Functional Programming – Readability Versus Brevity
6. Decorators – Enabling Code Reuse by Decorating
7. Generators and Coroutines – Infinity, One Step at a Time
8. Metaclasses – Making Classes (Not Instances) Smarter
9. Documentation – How to Use Sphinx and reStructuredText
10. Testing and Logging – Preparing for Bugs
11. Debugging – Solving the Bugs
12. Performance – Tracking and Reducing Your Memory and CPU Usage
13. asyncio – Multithreading without Threads
14. Multiprocessing – When a Single CPU Core Is Not Enough
15. Scientific Python and Plotting
16. Artificial Intelligence
17. Extensions in C/C++, System Calls, and C/C++ Libraries
18. Packaging – Creating Your Own Libraries or Applications