Applied Unsupervised Learning with Python
暫譯: 使用 Python 的應用無監督學習

Johnston, Benjamin, Jones, Aaron, Kruger, Christopher

  • 出版商: Packt Publishing
  • 出版日期: 2019-05-24
  • 售價: $1,990
  • 貴賓價: 9.5$1,891
  • 語言: 英文
  • 頁數: 482
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1789952298
  • ISBN-13: 9781789952292
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

商品描述

Unsupervised learning is a useful and practical solution in situations where labeled data is not available.

Applied Unsupervised Learning with Python guides you on the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The course begins by explaining how basic clustering works to find similar data points in a set. Once you are well versed with the k-means algorithm and how it operates, you’ll learn what dimensionality reduction is and where to apply it. As you progress, you’ll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. You will complete the course by challenging yourself through various interesting activities such as performing a Market Basket Analysis and identifying relationships between different merchandises.

By the end of this course, you will have the skills you need to confidently build your own models using Python.

商品描述(中文翻譯)

無監督學習是在標記數據不可用的情況下,一種有用且實用的解決方案。

《使用 Python 應用無監督學習》指導您如何最佳地使用無監督學習技術,並利用 Python 函式庫從非結構化數據中提取有意義的信息。本課程首先解釋基本的聚類如何運作,以找到一組中相似的數據點。一旦您熟悉 k-means 演算法及其運作方式,您將學習什麼是降維以及如何應用它。隨著學習的進展,您將了解各種神經網絡技術及其如何改善您的模型。在研究無監督學習的應用時,您還將了解如何挖掘 Twitter 和 Facebook 上的熱門話題,並為用戶建立新聞推薦引擎。您將通過各種有趣的活動來挑戰自己,例如執行市場籃分析(Market Basket Analysis)並識別不同商品之間的關係,來完成本課程。

到課程結束時,您將具備自信地使用 Python 構建自己的模型所需的技能。