Mastering Machine Learning With scikit-learn (Paperback)
暫譯: 精通機器學習與 scikit-learn (平裝本)
Gavin Hackeling
- 出版商: Packt Publishing
- 出版日期: 2014-10-31
- 售價: $1,880
- 貴賓價: 9.5 折 $1,786
- 語言: 英文
- 頁數: 238
- 裝訂: Paperback
- ISBN: 1783988363
- ISBN-13: 9781783988365
-
相關分類:
Machine Learning
已過版
買這商品的人也買了...
-
$340$289 -
$399$339 -
$450$383 -
$403自製編程語言
-
$403獨闢蹊徑的編程思維-拿來主義編程
-
$1,214Functional Thinking: Paradigm Over Syntax (Paperback)
-
$1,590$1,511 -
$450$356 -
$180計算機是怎樣跑起來的 (How Computer Works)
-
$490$387 -
$1,470$1,397 -
$1,936Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems (Paperback)
-
$680$537
商品描述
Apply effective learning algorithms to real-world problems using scikit-learn
About This Book
- Design and troubleshoot machine learning systems for common tasks including regression, classification, and clustering
- Acquaint yourself with popular machine learning algorithms, including decision trees, logistic regression, and support vector machines
- A practical example-based guide to help you gain expertise in implementing and evaluating machine learning systems using scikit-learn
Who This Book Is For
If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.
In Detail
This book examines machine learning models including logistic regression, decision trees, and support vector machines, and applies them to common problems such as categorizing documents and classifying images. It begins with the fundamentals of machine learning, introducing you to the supervised-unsupervised spectrum, the uses of training and test data, and evaluating models. You will learn how to use generalized linear models in regression problems, as well as solve problems with text and categorical features.
You will be acquainted with the use of logistic regression, regularization, and the various loss functions that are used by generalized linear models. The book will also walk you through an example project that prompts you to label the most uncertain training examples. You will also use an unsupervised Hidden Markov Model to predict stock prices.
By the end of the book, you will be an expert in scikit-learn and will be well versed in machine learning
商品描述(中文翻譯)
使用 scikit-learn 將有效的學習演算法應用於現實世界的問題
本書介紹
- 設計和排除機器學習系統的故障,處理常見任務,包括回歸、分類和聚類
- 熟悉流行的機器學習演算法,包括決策樹、邏輯回歸和支持向量機
- 一本以實例為基礎的實用指南,幫助您在使用 scikit-learn 實施和評估機器學習系統方面獲得專業知識
本書適合誰閱讀
如果您是一位希望了解機器學習模型如何運作以及如何有效應用它們的軟體開發人員,那麼這本書適合您。對機器學習基礎知識和 Python 的熟悉將會有所幫助,但並非必需。
詳細內容
本書探討了機器學習模型,包括邏輯回歸、決策樹和支持向量機,並將其應用於常見問題,例如文件分類和圖像分類。它從機器學習的基本原理開始,介紹監督式與非監督式學習的範疇、訓練數據和測試數據的用途,以及模型的評估。您將學習如何在回歸問題中使用廣義線性模型,以及如何解決具有文本和類別特徵的問題。
您將熟悉邏輯回歸、正則化以及廣義線性模型所使用的各種損失函數。本書還將引導您完成一個示例專案,讓您標記最不確定的訓練範例。您還將使用非監督式隱馬可夫模型來預測股價。
在本書結束時,您將成為 scikit-learn 的專家,並對機器學習有深入的了解。