Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data
暫譯: 使用 Python 進行探索性資料分析食譜:超過 50 種食譜分析、視覺化及提取結構化與非結構化資料的洞見
Oluleye, Ayodele
- 出版商: Packt Publishing
- 出版日期: 2023-06-30
- 售價: $2,050
- 貴賓價: 9.5 折 $1,948
- 語言: 英文
- 頁數: 382
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803231106
- ISBN-13: 9781803231105
-
相關分類:
Python、程式語言、Data Science
海外代購書籍(需單獨結帳)
商品描述
Extract valuable insights from data by leveraging various analysis and visualization techniques with this comprehensive guide
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:
- Gain practical experience in conducting EDA on a single variable of interest in Python
- Learn the different techniques for analyzing and exploring tabular, time series, and textual data in Python
- Get well versed in data visualization using leading Python libraries like Matplotlib and seaborn
Book Description:
Exploratory data analysis (EDA) is a crucial step in data analysis and machine learning projects as it helps in uncovering relationships and patterns and provides insights into structured and unstructured datasets. With various techniques and libraries available for performing EDA, choosing the right approach can sometimes be challenging. This hands-on guide provides you with practical steps and ready-to-use code for conducting exploratory analysis on tabular, time series, and textual data.
The book begins by focusing on preliminary recipes such as summary statistics, data preparation, and data visualization libraries. As you advance, you'll discover how to implement univariate, bivariate, and multivariate analyses on tabular data. Throughout the chapters, you'll become well versed in popular Python visualization and data manipulation libraries such as seaborn and pandas.
By the end of this book, you will have mastered the various EDA techniques and implemented them efficiently on structured and unstructured data.
What You Will Learn:
- Perform EDA with leading Python data visualization libraries
- Execute univariate, bivariate, and multivariate analyses on tabular data
- Uncover patterns and relationships within time series data
- Identify hidden patterns within textual data
- Discover different techniques to prepare data for analysis
- Overcome the challenge of outliers and missing values during data analysis
- Leverage automated EDA for fast and efficient analysis
Who this book is for:
If you are a data analyst interested in the practical application of exploratory data analysis in Python, then this book is for you. This book will also benefit data scientists, researchers, and statisticians who are looking for hands-on instructions on how to apply EDA techniques using Python libraries. Basic knowledge of Python programming and a basic understanding of fundamental statistical concepts is a prerequisite.
商品描述(中文翻譯)
透過各種分析和視覺化技術從數據中提取有價值的見解,這本全面的指南將為您提供幫助
購買印刷版或Kindle書籍包括免費的PDF電子書
主要特點:
- 在Python中獲得對單一感興趣變數進行探索性數據分析(EDA)的實踐經驗
- 學習在Python中分析和探索表格、時間序列和文本數據的不同技術
- 熟悉使用領先的Python庫如Matplotlib和seaborn進行數據視覺化
書籍描述:
探索性數據分析(EDA)是數據分析和機器學習項目中的關鍵步驟,因為它有助於揭示關係和模式,並提供對結構化和非結構化數據集的見解。隨著可用於執行EDA的各種技術和庫,選擇正確的方法有時可能會很具挑戰性。本實用指南為您提供了進行表格、時間序列和文本數據探索性分析的實用步驟和現成的代碼。
本書首先專注於初步的配方,如摘要統計、數據準備和數據視覺化庫。隨著進展,您將發現如何對表格數據實施單變量、雙變量和多變量分析。在各章中,您將熟悉流行的Python視覺化和數據操作庫,如seaborn和pandas。
在本書結束時,您將掌握各種EDA技術,並能有效地在結構化和非結構化數據上實施這些技術。
您將學到什麼:
- 使用領先的Python數據視覺化庫執行EDA
- 對表格數據執行單變量、雙變量和多變量分析
- 揭示時間序列數據中的模式和關係
- 識別文本數據中的隱藏模式
- 發現不同的數據準備技術以進行分析
- 克服數據分析過程中的異常值和缺失值挑戰
- 利用自動化EDA進行快速高效的分析
本書適合誰:
如果您是一位對在Python中實用探索性數據分析感興趣的數據分析師,那麼這本書適合您。本書也將使數據科學家、研究人員和統計學家受益,他們正在尋找如何使用Python庫應用EDA技術的實用指導。具備基本的Python編程知識和對基本統計概念的基本理解是先決條件。