此商品已下架,若仍需天瓏代為查詢或代購書籍,請與門市客服人員聯繫,或 E-mail 至 service@tenlong.com.tw 將有專人為您服務。

Hands-On Recommendation Systems with Python: Start building powerful and personalized, recommendation engines with Python
暫譯: 使用 Python 實作推薦系統:開始建立強大且個性化的推薦引擎

Rounak Banik

  • 出版商: Packt Publishing
  • 出版日期: 2018-07-27
  • 售價: $1,050
  • 貴賓價: 9.5$998
  • 語言: 英文
  • 頁數: 146
  • 裝訂: Paperback
  • ISBN: 1788993756
  • ISBN-13: 9781788993753
  • 相關分類: Python程式語言推薦系統
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web

Key Features

  • Build industry-standard recommender systems
  • Only familiarity with Python is required
  • No need to wade through complicated machine learning theory to use this book

Book Description

Recommendation systems are at the heart of almost every internet business today; from Facebook to Net?ix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform.

This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory—you'll get started with building and learning about recommenders as quickly as possible..

In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques 

With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains.

What you will learn

  • Get to grips with the different kinds of recommender systems
  • Master data-wrangling techniques using the pandas library
  • Building an IMDB Top 250 Clone
  • Build a content based engine to recommend movies based on movie metadata
  • Employ data-mining techniques used in building recommenders
  • Build industry-standard collaborative filters using powerful algorithms
  • Building Hybrid Recommenders that incorporate content based and collaborative fltering

Who this book is for

If you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.

Table of Contents

  1. Getting Started with Recommender Systems
  2. Manipulating Data with the Pandas Library
  3. Building an IMDB Top 250 Clone with Pandas
  4. Building Content-Based Recommenders
  5. Getting Started with Data Mining Techniques
  6. Building Collaborative Filters
  7. Hybrid Recommenders

商品描述(中文翻譯)

**使用 Python 建立實作推薦系統,學習構建各種強大推薦系統(協同過濾、知識和內容基礎)所需的工具和技術,並將其部署到網路上**

### 主要特點
- 建立業界標準的推薦系統
- 只需對 Python 有基本了解
- 使用本書不需要深入複雜的機器學習理論

### 書籍描述
推薦系統是當今幾乎所有互聯網業務的核心;從 Facebook 到 Netflix 再到 Amazon。提供良好的推薦,無論是朋友、電影還是雜貨,對於定義用戶體驗和吸引客戶使用您的平台至關重要。

本書將教您如何做到這一點。您將了解業界使用的不同類型的推薦系統,並學會如何使用 Python 從零開始構建它們。無需深入大量的機器學習理論—您將儘快開始構建和學習推薦系統。

在本書中,您將建立一個 IMDB Top 250 的克隆,這是一個基於電影元數據的內容推薦引擎。您將使用協同過濾來利用客戶行為數據,並建立一個結合內容基礎和協同過濾技術的混合推薦系統。

有了這本書,您開始構建推薦系統所需的唯一條件是對 Python 的熟悉,當您完成時,您將對推薦系統的運作有很好的理解,並能夠將您所學的技術應用到自己的問題領域中。

### 您將學到什麼
- 理解不同類型的推薦系統
- 精通使用 pandas 庫的數據處理技術
- 建立 IMDB Top 250 克隆
- 建立一個基於內容的引擎,根據電影元數據推薦電影
- 採用數據挖掘技術來構建推薦系統
- 使用強大的算法建立業界標準的協同過濾器
- 建立結合內容基礎和協同過濾的混合推薦系統

### 本書適合誰
如果您是 Python 開發者,並希望為社交網絡、新聞個性化或智能廣告開發應用程序,那麼這本書就是為您而寫的。對機器學習技術的基本知識將有所幫助,但不是必需的。

### 目錄
1. 開始推薦系統
2. 使用 Pandas 庫操作數據
3. 使用 Pandas 建立 IMDB Top 250 克隆
4. 建立基於內容的推薦系統
5. 開始數據挖掘技術
6. 建立協同過濾器
7. 混合推薦系統

最後瀏覽商品 (20)