Building Recommendation Engines
暫譯: 建立推薦引擎

Suresh Kumar Gorakala

商品描述

Key Features

  • A step-by-step guide to building recommendation engines that are personalized, scalable, and real time
  • Get to grips with the best tool available on the market to create recommender systems
  • This hands-on guide shows you how to implement different tools for recommendation engines, and when to use which

Book Description

A recommendation engine (sometimes referred to as a recommender system) is a tool that lets algorithm developers predict what a user may or may not like among a list of given items. Recommender systems have become extremely common in recent years, and are applied in a variety of applications. The most popular ones are movies, music, news, books, research articles, search queries, social tags, and products in general.

The book starts with an introduction to recommendation systems and its applications. You will then start building recommendation engines straight away from the very basics. As you move along, you will learn to build recommender systems with popular frameworks such as R, Python, Spark, Neo4j, and Hadoop. You will get an insight into the pros and cons of each recommendation engine and when to use which recommendation to ensure each pick is the one that suits you the best.

During the course of the book, you will create simple recommendation engine, real-time recommendation engine, scalable recommendation engine, and more. You will familiarize yourselves with various techniques of recommender systems such as collaborative, content-based, and cross-recommendations before getting to know the best practices of building a recommender system towards the end of the book!

What you will learn

  • Build your first recommendation engine
  • Discover the tools needed to build recommendation engines
  • Dive into the various techniques of recommender systems such as collaborative, content-based, and cross-recommendations
  • Create efficient decision-making systems that will ease your work
  • Familiarize yourself with machine learning algorithms in different frameworks
  • Master different versions of recommendation engines from practical code examples
  • Explore various recommender systems and implement them in popular techniques with R, Python, Spark, and others

About the Author

Suresh Kumar Gorakala is a Data scientist focused on Artificial Intelligence. He has professional experience close to 10 years, having worked with various global clients across multiple domains and helped them in solving their business problems using Advanced Big Data Analytics. He has extensively worked on Recommendation Engines, Natural language Processing, Advanced Machine Learning, Graph Databases. He previously co-authored Building a Recommendation System with R for Packt Publishing. He is passionate traveler and is photographer by hobby.

Table of Contents

  1. Introduction to Recommendation Engines
  2. Build Your First Recommendation Engine
  3. Recommendation Engines Explained
  4. Data Mining Techniques Used in Recommendation Engines
  5. Building Collaborative Filtering Recommendation Engines
  6. Building Personalized Recommendation Engines
  7. Building Real-Time Recommendation Engines with Spark
  8. Building Real-Time Recommendations with Neo4j
  9. Building Scalable Recommendation Engines with Mahout
  10. What Next - The Future of Recommendation Engines

商品描述(中文翻譯)

#### 主要特點
- 一步一步的指南,教你如何建立個性化、可擴展且即時的推薦引擎
- 熟悉市場上最好的工具,以創建推薦系統
- 本實用指南展示了如何實現不同的推薦引擎工具,以及何時使用哪一種工具

#### 書籍描述
推薦引擎(有時稱為推薦系統)是一種工具,讓算法開發者能夠預測用戶在給定項目列表中可能喜歡或不喜歡的內容。近年來,推薦系統變得極為普遍,並應用於各種應用中。最受歡迎的應用包括電影、音樂、新聞、書籍、研究文章、搜索查詢、社交標籤以及一般產品。

本書首先介紹推薦系統及其應用。接著,你將從最基本的開始立即構建推薦引擎。隨著進展,你將學會使用流行的框架如 R、Python、Spark、Neo4j 和 Hadoop 來構建推薦系統。你將深入了解每種推薦引擎的優缺點,以及何時使用哪種推薦,以確保每個選擇都是最適合你的。

在本書的過程中,你將創建簡單的推薦引擎、即時推薦引擎、可擴展的推薦引擎等。你將熟悉各種推薦系統的技術,如協同過濾、基於內容的推薦和交叉推薦,並在書的最後了解構建推薦系統的最佳實踐!

#### 你將學到的內容
- 建立你的第一個推薦引擎
- 探索建立推薦引擎所需的工具
- 深入了解各種推薦系統的技術,如協同過濾、基於內容的推薦和交叉推薦
- 創建高效的決策系統,簡化你的工作
- 熟悉不同框架中的機器學習算法
- 從實用的代碼示例中掌握不同版本的推薦引擎
- 探索各種推薦系統,並使用 R、Python、Spark 等流行技術實現它們

#### 關於作者
**Suresh Kumar Gorakala** 是一位專注於人工智慧的數據科學家。他擁有近 10 年的專業經驗,曾與多個領域的全球客戶合作,幫助他們利用先進的大數據分析解決商業問題。他在推薦引擎、自然語言處理、先進機器學習和圖形數據庫方面有廣泛的工作經驗。他曾共同撰寫《使用 R 建立推薦系統》一書,為 Packt Publishing 出版。他熱愛旅行,並以攝影為興趣。

#### 目錄
1. 推薦引擎介紹
2. 建立你的第一個推薦引擎
3. 推薦引擎解釋
4. 推薦引擎中使用的數據挖掘技術
5. 建立協同過濾推薦引擎
6. 建立個性化推薦引擎
7. 使用 Spark 建立即時推薦引擎
8. 使用 Neo4j 建立即時推薦
9. 使用 Mahout 建立可擴展的推薦引擎
10. 下一步 - 推薦引擎的未來

最後瀏覽商品 (20)