Deep Learning with Keras
暫譯: 使用 Keras 的深度學習
Antonio Gulli, Sujit Pal
- 出版商: Packt Publishing
- 出版日期: 2017-04-26
- 售價: $2,200
- 貴賓價: 9.5 折 $2,090
- 語言: 英文
- 頁數: 318
- 裝訂: Paperback
- ISBN: 1787128423
- ISBN-13: 9781787128422
-
相關分類:
DeepLearning
-
相關翻譯:
Keras 深度學習實戰 (簡中版)
-
其他版本:
Deep Learning with TensorFlow 2 and Keras, 2/e (Paperback)
買這商品的人也買了...
-
$3,383Bayesian Networks: A Practical Guide to Applications
-
$2,980$2,831 -
$1,200$1,140 -
$1,850$1,758 -
$1,690$1,606 -
$360$284 -
$1,090$1,036 -
$360$284 -
$1,680Big Data Analytics with R (Paperback)
-
$580$452 -
$580$458 -
$2,058Data Mining : Practical Machine Learning Tools and Techniques, 4/e (Paperback)
-
$680$578 -
$1,976The Data Science Handbook
-
$1,850$1,758 -
$590$460 -
$749Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms (Paperback)
-
$390$257 -
$990Machine Learning for OpenCV
-
$520$411 -
$450$356 -
$699$594 -
$888OpenCV 3.x with Python By Example, 2/e
-
$1,118Advanced Deep Learning with Keras: Applying GANs and other new deep learning algorithms to the real world (Paperback)
-
$1,216Hands-On Machine Learning on Google Cloud Platform: Implementing smart and efficient analytics using Cloud ML Engine
相關主題
商品描述
Key Features
- Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games
- See how various deep-learning models and practical use-cases can be implemented using Keras
- A practical, hands-on guide with real-world examples to give you a strong foundation in Keras
Book Description
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer.
Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks.
What you will learn
- Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm
- Fine-tune a neural network to improve the quality of results
- Use deep learning for image and audio processing
- Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
- Identify problems
商品描述(中文翻譯)
**主要特點**
- 在 Keras 中實現各種深度學習算法,並了解深度學習如何應用於遊戲中
- 了解如何使用 Keras 實現各種深度學習模型和實際案例
- 一本實用的手把手指南,提供真實世界的範例,幫助您在 Keras 中建立堅實的基礎
**書籍描述**
本書首先介紹監督式學習算法,例如簡單線性回歸、經典的多層感知器以及更複雜的深度卷積網絡。您還將探索圖像處理,包括手寫數字圖像的識別、將圖像分類為不同類別,以及與相關圖像註釋的高級物體識別。書中還提供了面部檢測的顯著點識別示例。接下來,您將了解遞迴網絡,這些網絡經過優化以處理序列數據,例如文本、音頻或時間序列。隨後,您將學習無監督式學習算法,例如自編碼器和非常受歡迎的生成對抗網絡(GAN)。您還將探索神經網絡的非傳統用途,如風格轉換。
最後,您將研究強化學習及其在人工智慧遊戲中的應用,這是神經網絡研究和應用的另一個熱門方向。
**您將學到的內容**
- 使用反向傳播算法逐步優化大型神經網絡的功能
- 微調神經網絡以提高結果的質量
- 使用深度學習進行圖像和音頻處理
- 使用遞迴神經張量網絡(RNTNs)在特殊情況下超越標準詞嵌入
- 識別問題