Bayesian Networks: A Practical Guide to Applications
暫譯: 貝葉斯網路:應用實務指南

Olivier Pourret, Patrick Naïm, Bruce Marcot

  • 出版商: Wiley
  • 出版日期: 2008-05-01
  • 定價: $3,980
  • 售價: 8.5$3,383
  • 語言: 英文
  • 頁數: 446
  • 裝訂: Hardcover
  • ISBN: 0470060301
  • ISBN-13: 9780470060308
  • 相關分類: 機率統計學 Probability-and-statistics
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

商品描述

Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis.

This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering.

Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks.

The book:

  • Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. 

  • Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations.

  • Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees.

  • Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user.

  • Offers a historical perspective on the subject and analyses future directions for research.

Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.

商品描述(中文翻譯)

貝葉斯網路(Bayesian Networks),是人工智慧與統計學融合的結果,正日益受到重視。其多功能性和建模能力目前已被應用於多個領域,進行分析、模擬、預測和診斷。

本書提供了貝葉斯網路的一般介紹,定義並通過教學範例和二十個來自醫學、計算機、自然科學和工程等多個領域的實際案例來說明基本概念。

本書旨在幫助分析師、工程師、科學家和參與複雜決策過程的專業人士成功實施貝葉斯網路,為讀者提供經過驗證的方法來生成、校準、評估和驗證貝葉斯網路。

本書的內容包括:

- 提供克服常見實務挑戰的工具,例如處理缺失的輸入數據、與專家和決策者互動、確定模型的最佳粒度和大小。

- 突顯貝葉斯網路的優勢,同時也討論其局限性。

- 將貝葉斯網路與其他建模技術進行比較,如神經網路、模糊邏輯和故障樹。

- 從使用者的角度描述主要貝葉斯網路軟體包的主要特徵,包括 Netica、Hugin、Elvira 和 Discoverer,以便於比較。

- 提供該主題的歷史視角並分析未來的研究方向。

本書由在金融、銀行、醫學、機器人技術、土木工程、地質學、地理學、遺傳學、法醫科學、生態學和工業等領域應用貝葉斯網路的領先專家撰寫,對於從事統計分析或建模的實務工作者和研究人員都有很大的幫助。