Bayesian Networks in Educational Assessment (Statistics for Social and Behavioral Sciences)
Russell G. Almond, Robert J. Mislevy, Linda S. Steinberg, Duanli Yan, David M. Williamson
- 出版商: Springer
- 出版日期: 2015-03-11
- 售價: $5,530
- 貴賓價: 9.5 折 $5,254
- 語言: 英文
- 頁數: 662
- 裝訂: Hardcover
- ISBN: 149392124X
- ISBN-13: 9781493921249
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments.
Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics.
This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources.
商品描述(中文翻譯)
貝葉斯推論網絡,結合了統計學和專家系統,已在醫學、商業和社會科學中推進了不確定性下的推理。這本創新著作是首部全面探討如何將其應用於設計和分析創新教育評估的作品。
第一部分發展了貝葉斯網絡在評估、統計和圖論中的基礎,並詳細介紹了實時更新算法。第二部分則探討了用於評估的參數形式、模型檢查技術,以及使用EM算法和馬可夫鏈蒙特卡羅(MCMC)進行估計的方式。本書的一個獨特特點是其基於證據中心設計(ECD)框架的評估設計。這種“設計前瞻”方法使設計者能夠充分利用貝葉斯網絡的模組化特性,並能夠建模在互動、技術豐富的評估(如模擬)中出現的複雜證據關係。第三部分描述了ECD,將貝葉斯網絡定位為原則性設計過程中的一個重要組成部分,並通過深入探討BioMass項目來說明這些概念:一個基於標準的、網絡交付的科學探究評估示範,專注於遺傳學。
本書既是對於有興趣於評估的專業人士的資源,也是進階學生的參考資料。其清晰的闡述、詳細的數值範例以及來自真實和教學應用的示範,提供了如何在教育評估中使用貝葉斯網絡的寶貴說明。每章後面都有練習題,並且在線伴隨網站提供了詞彙表、數據集和問題設置,以及計算資源的連結。