Python Data Analysis - Second Edition
暫譯: Python 數據分析(第二版)
Armando Fandango
- 出版商: Packt Publishing
- 出版日期: 2017-03-30
- 定價: $1,850
- 售價: 8.0 折 $1,480
- 語言: 英文
- 頁數: 330
- 裝訂: Paperback
- ISBN: 1787127486
- ISBN-13: 9781787127487
-
相關分類:
Python、程式語言、Data Science
-
相關翻譯:
Python數據分析 第2版 (簡中版)
立即出貨(限量) (庫存=3)
買這商品的人也買了...
-
$299Python Power!: The Comprehensive Guide
-
$840Interactive Data Visualization for the Web (Paperback)
-
$990Doing Math with Python: Use Programming to Explore Algebra, Statistics, Calculus, and More! (Paperback)
-
$360$284 -
$1,225Python Data Science Handbook: Essential Tools for Working with Data (Paperback)
-
$505Xcode 實戰:Apple 平臺開發實用技術、技巧及最佳流程
-
$1,155Data Visualization with Python and JavaScript: Scrape, Clean, Explore & Transform Your Data
-
$1,850$1,758 -
$2,980$2,831 -
$1,107The Hitchhiker's Guide to Python: Best Practices for Development (Paperback)
-
$590$502 -
$990$941 -
$2,050$1,948 -
$490$417 -
$380$266 -
$2,220$2,109 -
$360$281 -
$948Swift Programming: The Big Nerd Ranch Guide, 2/e (Paperback)
-
$306技術的潛能:商業顛覆、創新與執行 (The Future of Technology Management and the Business Environment)
-
$1,320Windows 10 Anniversary Update Bible
-
$1,716Creating Strategic Value through Financial Technology (Wiley Finance)
-
$390$308 -
$580$458 -
$1,900$1,805 -
$1,180$1,121
商品描述
Key Features
- Find, manipulate, and analyze your data using the Python 3.5 libraries
- Perform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python code
- An easy-to-follow guide with realistic examples that are frequently used in real-world data analysis projects.
Book Description
Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks.
With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis.
The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
What you will learn
- Install open source Python modules such NumPy, SciPy, Pandas, stasmodels, scikit-learn,theano, keras, and tensorflow on various platforms
- Prepare and clean your data, and use it for exploratory analysis
- Manipulate your data with Pandas
- Retrieve and store your data from RDBMS, NoSQL, and distributed filesystems such as HDFS and
商品描述(中文翻譯)
**主要特點**
- 使用 Python 3.5 函式庫查找、操作和分析您的數據
- 使用乾淨且高效的 Python 代碼執行高級、高性能的線性代數和數學計算
- 一本易於跟隨的指南,包含在現實世界數據分析專案中經常使用的實際範例
**書籍描述**
數據分析技術能從小型和大型數據中生成有用的見解。Python 以其強大的函式庫組合,已成為進行各種數據分析和預測建模任務的熱門平台。
在這本書中,您將學習如何使用 Python 處理和操作數據以進行複雜的分析和建模。我們將學習數據操作,例如使用 NumPy 和 Pandas 進行聚合、串接、附加、清理和處理缺失值。書中涵蓋如何從各種數據來源(如 SQL 和 NoSQL、CSV 檔案和 HDF5)存儲和檢索數據。我們還將學習如何使用可視化函式庫來視覺化數據,以及信號處理、時間序列、文本數據分析、機器學習和社交媒體分析等高級主題。
本書涵蓋了大量的 Python 模組,例如 matplotlib、statsmodels、scikit-learn 和 NLTK。它還涵蓋了如何將 Python 與外部環境(如 R、Fortran、C/C++ 和 Boost 函式庫)結合使用。
**您將學到的內容**
- 在各種平台上安裝開源 Python 模組,如 NumPy、SciPy、Pandas、statsmodels、scikit-learn、theano、keras 和 tensorflow
- 準備和清理您的數據,並用於探索性分析
- 使用 Pandas 操作您的數據
- 從 RDBMS、NoSQL 和分散式檔案系統(如 HDFS)檢索和存儲您的數據