Deep Learning with TensorFlow (Paperback)
Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy
- 出版商: Packt Publishing
- 出版日期: 2017-04-24
- 定價: $1,650
- 售價: 6.0 折 $990
- 語言: 英文
- 頁數: 320
- 裝訂: Paperback
- ISBN: 1786469782
- ISBN-13: 9781786469786
-
相關分類:
DeepLearning、TensorFlow
-
相關翻譯:
TensorFlow深度學習 (簡中版)
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
$2,500$2,375 -
$620$527 -
$1,300$1,274 -
$520$406 -
$780$616 -
$280$218 -
$348$331 -
$1,663$1,575 -
$1,617Deep Learning (Hardcover)
-
$500$395 -
$360$281 -
$990Artificial Intelligence with Python
-
$798Deep Learning with Hadoop (Paperback)
-
$332ASP.NET Core 跨平臺開發從入門到實戰
-
$2,370$2,252 -
$790$616 -
$450$356 -
$450$356 -
$590$460 -
$450$356 -
$1,764MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence (Paperback)
-
$390$332 -
$480$379 -
$653$614 -
$480$374
相關主題
商品描述
Key Features
- Learn advanced techniques in deep learning with this example-rich guide on Google's brainchild
- Explore various neural networks with the help of this comprehensive guide
- Advanced guide on machine learning techniques, in particular TensorFlow for deep learning.
Book Description
Deep learning is the next step after machine learning. It is machine learning but with a more advanced implementation. As machine learning is no longer an academic topic, but a mainstream practice, deep learning has taken a front seat. With deep learning being used by many data scientists, deeper neural networks are evaluated for accurate results. Data scientists want to explore data abstraction layers and this book will be their guide on this journey. This book evaluates common, and not so common, deep neural networks and shows how these can be exploited in the real world with complex raw data using TensorFlow.
The book will take you through an understanding of the current machine learning landscape then delve into TensorFlow and how to use it by considering various data sets and use cases. Throughout the chapters, you'll learn how to implement various deep learning algorithms for your machine learning systems and integrate them into your product offerings such as search, image recognition, and language processing. Additionally, we'll examine its performance by optimizing it with respect to its various parameters, comparing it against benchmarks along with teaching machines to learn from the information and determine the ideal behavior within a specific context, in order to maximize its performance.
After finishing the book, you will be familiar with machine learning techniques, in particular TensorFlow for deep learning, and will be ready to apply some of your knowledge in a real project either in a research or commercial setting.
What you will learn
- Provide an overview of the machine learning landscape
- Look at the historical development and progress of deep learning
- Describe TensorFlow and become very familiar with it both in theory and in practice
- Access public datasets and use TF to load, process, clean, and transform data
- Use TensorFlow on real-world data sets including images and text
- Get familiar with TensorFlow by applying it in various hands on exercises using the command line
- Evaluate the performance of your deep learning models
- Quickly teach machines to learn from data by exploring reinforcement learning techniques.
- Understand how this technology is being used in the real world by exploring active areas of deep learning research and application.
商品描述(中文翻譯)
主要特點:
- 透過這本範例豐富的指南,學習深度學習的高級技巧
- 探索各種神經網絡的全面指南
- 針對機器學習技術,特別是深度學習的 TensorFlow 的高級指南
書籍描述:
深度學習是機器學習的下一步。它是機器學習的進階實現方式。隨著機器學習不再是學術話題,而成為主流實踐,深度學習已經成為重要領域。許多數據科學家正在使用深度學習,評估更深層的神經網絡以獲得準確的結果。數據科學家希望探索數據抽象層,而本書將成為他們的指南。本書評估了常見和不太常見的深度神經網絡,並展示了如何使用 TensorFlow 在現實世界中處理複雜原始數據。
本書將帶您了解當前機器學習領域,然後深入研究 TensorFlow 及其在各種數據集和用例中的應用。在各章中,您將學習如何為機器學習系統實現各種深度學習算法,並將其整合到您的產品中,例如搜索、圖像識別和語言處理。此外,我們還將通過優化各種參數來評估其性能,並與基準進行比較,教導機器從信息中學習並確定在特定情境下的理想行為,以最大化其性能。
閱讀完本書後,您將熟悉機器學習技術,特別是深度學習的 TensorFlow,並準備在研究或商業環境中的實際項目中應用您的知識。
學到的內容:
- 提供機器學習領域的概述
- 查看深度學習的歷史發展和進展
- 描述 TensorFlow,並在理論和實踐中對其非常熟悉
- 存取公共數據集,使用 TensorFlow 加載、處理、清理和轉換數據
- 在真實世界的數據集上使用 TensorFlow,包括圖像和文本
- 通過使用命令行界面在各種實踐練習中熟悉 TensorFlow
- 評估深度學習模型的性能
- 通過探索強化學習技術,快速教導機器從數據中學習
- 通過探索深度學習研究和應用的活躍領域,了解這項技術在現實世界中的應用