Deep Learning with Theano
暫譯: 使用 Theano 的深度學習

Christopher Bourez

  • 出版商: Packt Publishing
  • 出版日期: 2017-07-31
  • 定價: $1,460
  • 售價: 6.0$876
  • 語言: 英文
  • 頁數: 300
  • 裝訂: Paperback
  • ISBN: 1786465825
  • ISBN-13: 9781786465825
  • 相關分類: DeepLearning
  • 立即出貨 (庫存=1)

  • Deep Learning with Theano-preview-1
  • Deep Learning with Theano-preview-2
  • Deep Learning with Theano-preview-3
  • Deep Learning with Theano-preview-4
  • Deep Learning with Theano-preview-5
  • Deep Learning with Theano-preview-6
  • Deep Learning with Theano-preview-7
  • Deep Learning with Theano-preview-8
  • Deep Learning with Theano-preview-9
  • Deep Learning with Theano-preview-10
  • Deep Learning with Theano-preview-11
  • Deep Learning with Theano-preview-12
  • Deep Learning with Theano-preview-13
  • Deep Learning with Theano-preview-14
  • Deep Learning with Theano-preview-15
  • Deep Learning with Theano-preview-16
  • Deep Learning with Theano-preview-17
  • Deep Learning with Theano-preview-18
  • Deep Learning with Theano-preview-19
  • Deep Learning with Theano-preview-20
  • Deep Learning with Theano-preview-21
  • Deep Learning with Theano-preview-22
  • Deep Learning with Theano-preview-23
  • Deep Learning with Theano-preview-24
  • Deep Learning with Theano-preview-25
  • Deep Learning with Theano-preview-26
  • Deep Learning with Theano-preview-27
  • Deep Learning with Theano-preview-28
  • Deep Learning with Theano-preview-29
  • Deep Learning with Theano-preview-30
  • Deep Learning with Theano-preview-31
  • Deep Learning with Theano-preview-32
  • Deep Learning with Theano-preview-33
  • Deep Learning with Theano-preview-34
  • Deep Learning with Theano-preview-35
  • Deep Learning with Theano-preview-36
  • Deep Learning with Theano-preview-37
  • Deep Learning with Theano-preview-38
  • Deep Learning with Theano-preview-39
  • Deep Learning with Theano-preview-40
  • Deep Learning with Theano-preview-41
Deep Learning with Theano-preview-1

相關主題

商品描述

Develop deep neural networks in Theano with practical code examples for image classification, machine translation, reinforcement agents, or generative models.

About This Book

  • Learn Theano basics and evaluate your mathematical expressions faster and in an efficient manner
  • Learn the design patterns of deep neural architectures to build efficient and powerful networks on your datasets
  • Apply your knowledge to concrete fields such as image classification, object detection, chatbots, machine translation, reinforcement agents, or generative models.

Who This Book Is For

This book is indented to provide a full overview of deep learning. From the beginner in deep learning and artificial intelligence, to the data scientist who wants to become familiar with Theano and its supporting libraries, or have an extended understanding of deep neural nets.

Some basic skills in Python programming and computer science will help, as well as skills in elementary algebra and calculus.

What You Will Learn

  • Get familiar with Theano and deep learning
  • Provide examples in supervised, unsupervised, generative, or reinforcement learning.
  • Discover the main principles for designing efficient deep learning nets: convolutions, residual connections, and recurrent connections.
  • Use Theano on real-world computer vision datasets, such as for digit classification and image classification.
  • Extend the use of Theano to natural language processing tasks, for chatbots or machine translation
  • Cover artificial intelligence-driven strategies to enable a robot to solve games or learn from an environment
  • Generate synthetic data that looks real with generative modeling
  • Become familiar with Lasagne and Keras, two frameworks built on top of Theano

In Detail

This book offers a complete overview of Deep Learning with Theano, a Python-based library that makes optimizing numerical expressions and deep learning models easy on CPU or GPU.

The book provides some practical code examples that help the beginner understand how easy it is to build complex neural networks, while more experimented data scientists will appreciate the reach of the book, addressing supervised and unsupervised learning, generative models, reinforcement learning in the fields of image recognition, natural language processing, or game strategy.

The book also discusses image recognition tasks that range from simple digit recognition, image classification, object localization, image segmentation, to image captioning. Natural language processing examples include text generation, chatbots, machine translation, and question answering. The last example deals with generating random data that looks real and solving games such as in the Open-AI gym.

At the end, this book sums up the best -performing nets for each task. While early research results were based on deep stacks of neural layers, in particular, convolutional layers, the book presents the principles that improved the efficiency of these architectures, in order to help the reader build new custom nets.

Style and approach

It is an easy-to-follow example book that teaches you how to perform fast, efficient computations in Python. Starting with the very basics-NumPy, installing Theano, this book will take you to the smooth journey of implementing Theano for advanced computations for machine learning and deep learning.

商品描述(中文翻譯)

使用 Theano 開發深度神經網絡,並提供實用的代碼範例,應用於圖像分類、機器翻譯、強化學習代理或生成模型。

本書介紹


  • 學習 Theano 基礎知識,快速且高效地評估數學表達式

  • 學習深度神經架構的設計模式,以在您的數據集上構建高效且強大的網絡

  • 將您的知識應用於具體領域,如圖像分類、物體檢測、聊天機器人、機器翻譯、強化學習代理或生成模型。

本書適合誰閱讀

本書旨在提供深度學習的全面概述。無論是深度學習和人工智慧的初學者,還是希望熟悉 Theano 及其支持庫的數據科學家,或是希望深入了解深度神經網絡的讀者。

具備一些 Python 程式設計和計算機科學的基本技能將會有所幫助,此外,基礎代數和微積分的技能也很重要。

您將學到什麼


  • 熟悉 Theano 和深度學習

  • 提供監督式、非監督式、生成式或強化學習的範例。

  • 發現設計高效深度學習網絡的主要原則:卷積、殘差連接和遞迴連接。

  • 在實際的計算機視覺數據集上使用 Theano,例如數字分類和圖像分類。

  • 將 Theano 擴展到自然語言處理任務,如聊天機器人或機器翻譯

  • 涵蓋人工智慧驅動的策略,使機器人能夠解決遊戲或從環境中學習

  • 生成看起來真實的合成數據,使用生成建模

  • 熟悉 Lasagne 和 Keras,這兩個基於 Theano 的框架

詳細內容

本書提供了使用 Theano 的深度學習完整概述,Theano 是一個基於 Python 的庫,使得在 CPU 或 GPU 上優化數值表達式和深度學習模型變得簡單。

本書提供了一些實用的代碼範例,幫助初學者理解構建複雜神經網絡的簡易性,而更有經驗的數據科學家將會欣賞本書的深度,涵蓋監督式和非監督式學習、生成模型、強化學習,應用於圖像識別、自然語言處理或遊戲策略等領域。

本書還討論了圖像識別任務,範圍從簡單的數字識別、圖像分類、物體定位、圖像分割到圖像標註。自然語言處理的範例包括文本生成、聊天機器人、機器翻譯和問題回答。最後一個範例涉及生成看起來真實的隨機數據以及解決如 Open-AI gym 中的遊戲。

最後,本書總結了每個任務的最佳表現網絡。雖然早期的研究結果基於深層神經層,特別是卷積層,但本書介紹了提高這些架構效率的原則,以幫助讀者構建新的自定義網絡。

風格與方法

這是一本易於跟隨的範例書,教您如何在 Python 中執行快速、高效的計算。從最基本的 NumPy 和安裝 Theano 開始,本書將帶您順利實現 Theano 以進行機器學習和深度學習的高級計算。