TensorFlow Machine Learning Cookbook (Paperback)
暫譯: TensorFlow 機器學習食譜 (平裝本)
Nick McClure
- 出版商: Packt Publishing
- 出版日期: 2017-02-15
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 370
- 裝訂: Paperback
- ISBN: 1786462168
- ISBN-13: 9781786462169
-
相關分類:
DeepLearning、TensorFlow、Machine Learning
-
相關翻譯:
TensorFlow機器學習實戰指南 (簡中版)
-
其他版本:
TensorFlow Machine Learning Cookbook - Second Edition
買這商品的人也買了...
-
$650$553 -
$2,720$2,584 -
$780$616 -
$305圖解機器學習
-
$1,872Deep Learning: A Practitioner's Approach (Paperback)
-
$2,800Computer Vision Metrics: Textbook (Hardcover)
-
$301神經網絡與深度學習
-
$1,617Deep Learning (Hardcover)
-
$870Building Machine Learning Projects with TensorFlow (Paperback)
-
$360$238 -
$403TensorFlow 實戰
-
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
-
$590$460 -
$390$308 -
$595Hands-On Deep Learning with TensorFlow
-
$898Python Machine Learning, 2/e (Paperback)
-
$1,900$1,805 -
$580$458 -
$352TensorFlow機器學習實戰指南
-
$380$300 -
$221TensorFlow機器學習項目實戰 (Building Machine Learning Projects with TensorFlow)
-
$1,960Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python
-
$454TensorFlow 深度學習應用實踐
-
$380$300 -
$490$417
商品描述
Key Features
- Your quick guide to implementing TensorFlow in your day-to-day machine learning activities
- Learn advanced techniques that bring more accuracy and speed to machine learning
- Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow
Book Description
TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google's machine learning library TensorFlow.
This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP.
Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.
What you will learn
- Become familiar with the basics of the TensorFlow machine learning library
- Get to know Linear Regression techniques with TensorFlow
- Learn SVMs with hands-on recipes
- Implement neural networks and improve predictions
- Apply NLP and sentiment analysis to your data
- Master CNN and RNN through practical recipes
- Take TensorFlow into production
About the Author
Nick McClure is currently a senior data scientist at PayScale, Inc. in Seattle, WA. Prior to this, he has worked at Zillow and Caesar's Entertainment. He got his degrees in Applied Mathematics from The University of Montana and the College of Saint Benedict and Saint John's University.
He has a passion for learning and advocating for analytics, machine learning, and artificial intelligence. Nick occasionally puts his thoughts and musings on his blog, http://fromdata.org/, or through his Twitter account, @nfmcclure.
Table of Contents
- Getting Started with TensorFlow
- The TensorFlow Way
- Linear Regression
- Support Vector Machines
- Nearest Neighbor Methods
- Neural Networks
- Natural Language Processing
- Convolutional Neural Networks
- Recurrent Neural Networks
- Taking TensorFlow to Production
- More with TensorFlow
商品描述(中文翻譯)
主要特點
- 您日常機器學習活動中實施 TensorFlow 的快速指南
- 學習提高機器學習準確性和速度的進階技術
- 透過這本 TensorFlow 指南,將您的知識升級到第二代機器學習
書籍描述
TensorFlow 是一個開源的機器智能軟體庫。本書中的獨立食譜將教您如何使用 TensorFlow 進行複雜的數據計算,並讓您深入挖掘數據,獲得前所未有的洞察。您將學習如何訓練模型、模型評估、情感分析、回歸分析、聚類分析、人工神經網絡和深度學習,每一個都使用 Google 的機器學習庫 TensorFlow。
本指南從 TensorFlow 庫的基本概念開始,包括變數、矩陣和各種數據來源。接下來,您將獲得使用 TensorFlow 進行線性回歸技術的實作經驗。接下來的章節將涵蓋重要的高階概念,如神經網絡、卷積神經網絡 (CNN)、遞迴神經網絡 (RNN) 和自然語言處理 (NLP)。
一旦您熟悉並適應 TensorFlow 生態系統,最後一章將展示如何將其投入生產。
您將學到什麼
- 熟悉 TensorFlow 機器學習庫的基本知識
- 了解使用 TensorFlow 的線性回歸技術
- 透過實作食譜學習支持向量機 (SVM)
- 實作神經網絡並改善預測
- 將自然語言處理 (NLP) 和情感分析應用於您的數據
- 透過實用食譜掌握 CNN 和 RNN
- 將 TensorFlow 投入生產
關於作者
Nick McClure 目前是位於華盛頓州西雅圖的 PayScale, Inc. 的高級數據科學家。在此之前,他曾在 Zillow 和 Caesar's Entertainment 工作。他在蒙大拿大學和聖本尼迪克大學及聖約翰大學獲得應用數學學位。
他熱衷於學習並倡導分析、機器學習和人工智能。Nick 偶爾會在他的部落格 http://fromdata.org/ 或透過他的 Twitter 帳號 @nfmcclure 發表他的想法和隨想。
目錄
- 開始使用 TensorFlow
- TensorFlow 的方法
- 線性回歸
- 支持向量機
- 最近鄰方法
- 神經網絡
- 自然語言處理
- 卷積神經網絡
- 遞迴神經網絡
- 將 TensorFlow 投入生產
- 更多 TensorFlow 的應用