Building Machine Learning Projects with TensorFlow (Paperback)
暫譯: 使用 TensorFlow 建立機器學習專案 (平裝本)
Rodolfo Bonnin
- 出版商: Packt Publishing
- 出版日期: 2016-11-25
- 定價: $1,740
- 售價: 5.0 折 $870
- 語言: 英文
- 頁數: 291
- 裝訂: Paperback
- ISBN: 1786466589
- ISBN-13: 9781786466587
-
相關分類:
DeepLearning、TensorFlow、Machine Learning
-
相關翻譯:
TensorFlow機器學習項目實戰 (Building Machine Learning Projects with TensorFlow) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,500$2,375 -
$650$553 -
$454深入理解 Android-Wi-Fi / NFC 和 GPS 捲
-
$680$530 -
$780$616 -
$1,338High Performance Android Apps: Improve Ratings with Speed, Optimizations, and Testing (Paperback)
-
$1,440Learning Android Google Maps
-
$458精通移動 App 測試實戰 技術 工具和案例
-
$490$382 -
$580$458 -
$2,800Computer Vision Metrics: Textbook (Hardcover)
-
$301神經網絡與深度學習
-
$720$562 -
$590$502 -
$1,617Deep Learning (Hardcover)
-
$580$458 -
$2,420$2,299 -
$403TensorFlow 實戰
-
$450$356 -
$590$460 -
$390$308 -
$480$379 -
$580$458 -
$480$379 -
$650$429
商品描述
Key Features
- Bored of too much theory on TensorFlow? This book is what you need! Thirteen solid projects and four examples teach you how to implement TensorFlow in production.
- This example-rich guide teaches you how to perform highly accurate and efficient numerical computing with TensorFlow
- It is a practical and methodically explained guide that allows you to apply Tensorflow’s features from the very beginning.
Book Description
This book of projects highlights how TensorFlow can be used in different scenarios - this includes projects for training models, machine learning, deep learning, and working with various neural networks. Each project provides exciting and insightful exercises that will teach you how to use TensorFlow and show you how layers of data can be explored by working with Tensors. Simply pick a project that is in line with your environment and get stacks of information on how to implement TensorFlow in production.
What you will learn
- Load, interact, dissect, process, and save complex datasets
- Solve classification and regression problems using state of the art techniques
- Predict the outcome of a simple time series using Linear Regression modeling
- Use a Logistic Regression scheme to predict the future result of a time series
- Classify images using deep neural network schemes
- Tag a set of images and detect features using a deep neural network, including a Convolutional Neural Network (CNN) layer
- Resolve character recognition problems using the Recurrent Neural Network (RNN) model
About the Author
Rodolfo Bonnin is a systems engineer and PhD student at Universidad Tecnológica Nacional, Argentina. He also pursued parallel programming and image understanding postgraduate courses at Uni Stuttgart, Germany.
He has done research on high performance computing since 2005 and began studying and implementing convolutional neural networks in 2008,writing a CPU and GPU - supporting neural network feed forward stage. More recently he's been working in the field of fraud pattern detection with Neural Networks, and is currently working on signal classification using ML techniques.
Table of Contents
- Exploring and Transforming Data
- Clustering
- Linear Regression
- Logistic Regression
- Simple FeedForward Neural Networks
- Convolutional Neural Networks
- Recurrent Neural Networks and LSTM
- Deep Neural Networks
- Running Models at Scale – GPU and Serving
- Library Installation and Additional Tips
商品描述(中文翻譯)
**主要特點**
- 對 TensorFlow 的理論感到厭倦嗎?這本書正是你所需要的!十三個實作專案和四個範例教你如何在生產環境中實現 TensorFlow。
- 這本範例豐富的指南教你如何使用 TensorFlow 進行高精度和高效能的數值計算。
- 這是一本實用且有條理的指南,讓你從一開始就能應用 TensorFlow 的功能。
**書籍描述**
這本專案書突顯了 TensorFlow 在不同場景中的應用,包括訓練模型、機器學習、深度學習以及處理各種神經網絡的專案。每個專案都提供了令人興奮且具啟發性的練習,將教你如何使用 TensorFlow,並展示如何通過操作 Tensors 探索數據層。只需選擇一個與你的環境相符的專案,便能獲得大量有關如何在生產環境中實現 TensorFlow 的資訊。
**你將學到的內容**
- 載入、互動、剖析、處理和儲存複雜的數據集
- 使用最先進的技術解決分類和回歸問題
- 使用線性回歸模型預測簡單時間序列的結果
- 使用邏輯回歸方案預測時間序列的未來結果
- 使用深度神經網絡方案對圖像進行分類
- 標記一組圖像並使用深度神經網絡(包括卷積神經網絡 CNN 層)檢測特徵
- 使用遞迴神經網絡(RNN)模型解決字符識別問題
**關於作者**
**Rodolfo Bonnin** 是阿根廷國立技術大學的系統工程師及博士生。他還在德國斯圖加特大學修讀平行編程和圖像理解的研究生課程。
自 2005 年以來,他一直從事高效能計算的研究,並於 2008 年開始學習和實現卷積神經網絡,撰寫了支持 CPU 和 GPU 的神經網絡前饋階段。最近,他在使用神經網絡進行詐騙模式檢測的領域工作,並目前正在使用機器學習技術進行信號分類。
**目錄**
1. 探索與轉換數據
2. 聚類
3. 線性回歸
4. 邏輯回歸
5. 簡單前饋神經網絡
6. 卷積神經網絡
7. 遞迴神經網絡與 LSTM
8. 深度神經網絡
9. 大規模運行模型 - GPU 和服務
10. 函式庫安裝與額外提示