TensorFlow Machine Learning Cookbook - Second Edition
暫譯: TensorFlow 機器學習食譜 - 第二版
Nick McClure
- 出版商: Packt Publishing
- 出版日期: 2018-08-30
- 售價: $1,670
- 貴賓價: 9.5 折 $1,587
- 語言: 英文
- 頁數: 422
- 裝訂: Paperback
- ISBN: 1789131685
- ISBN-13: 9781789131680
-
相關分類:
Python、程式語言、DeepLearning、TensorFlow、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,420$2,299 -
$380$266 -
$2,240Python: Real World Machine Learning
-
$990Machine Learning for OpenCV
-
$1,640$1,558 -
$1,188Deep Reinforcement Learning Hands-On
-
$1,750$1,715 -
$1,770$1,682 -
$1,260$1,197
商品描述
Skip the theory and get the most out of Tensorflow to build production-ready machine learning models
Key Features
- Exploit the features of Tensorflow to build and deploy machine learning models
- Train neural networks to tackle real-world problems in Computer Vision and NLP
- Handy techniques to write production-ready code for your Tensorflow models
Book Description
TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and allow you to dig deeper and gain more insights into your data than ever before.
With the help of this book, you will work with recipes for training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and more. You will explore RNNs, CNNs, GANs, reinforcement learning, and capsule networks, each using Google's machine learning library, TensorFlow. Through real-world examples, you will get hands-on experience with linear regression techniques with TensorFlow. Once you are familiar and comfortable with the TensorFlow ecosystem, you will be shown how to take it to production.
By the end of the book, you will be proficient in the field of machine intelligence using TensorFlow. You will also have good insight into deep learning and be capable of implementing machine learning algorithms in real-world scenarios.
What you will learn
- Become familiar with the basic features of the TensorFlow library
- Get to know Linear Regression techniques with TensorFlow
- Learn SVMs with hands-on recipes
- Implement neural networks to improve predictive modeling
- Apply NLP and sentiment analysis to your data
- Master CNN and RNN through practical recipes
- Implement the gradient boosted random forest to predict housing prices
- Take TensorFlow into production
Who this book is for
If you are a data scientist or a machine learning engineer with some knowledge of linear algebra, statistics, and machine learning, this book is for you. If you want to skip the theory and build production-ready machine learning models using Tensorflow without reading pages and pages of material, this book is for you. Some background in Python programming is assumed.
Table of Contents
- Getting Started with TensorFlow
- The TensorFlow Way
- Linear Regression
- Support Vector Machines
- Nearest Neighbor Methods
- Neural Networks
- Natural Language Processing
- Convolutional Neural Networks
- Recurrent Neural Networks
- Taking TensorFlow to Production
- More with TensorFlow
商品描述(中文翻譯)
**跳過理論,充分利用 TensorFlow 建立生產就緒的機器學習模型**
#### 主要特點
- 利用 TensorFlow 的特性來構建和部署機器學習模型
- 訓練神經網絡以解決計算機視覺和自然語言處理中的現實問題
- 實用技術來為您的 TensorFlow 模型編寫生產就緒的代碼
#### 書籍描述
TensorFlow 是一個開源的機器智能軟體庫。本書中的獨立食譜將教您如何使用 TensorFlow 進行複雜的數據計算,並讓您深入挖掘數據,獲得前所未有的洞察。
在本書的幫助下,您將學習訓練模型、模型評估、情感分析、回歸分析、聚類分析、人工神經網絡等食譜。您將探索 RNN、CNN、GAN、強化學習和膠囊網絡,每一種都使用 Google 的機器學習庫 TensorFlow。通過現實世界的範例,您將獲得使用 TensorFlow 的線性回歸技術的實踐經驗。一旦您熟悉並適應 TensorFlow 生態系統,將會學到如何將其投入生產。
在書籍結束時,您將精通使用 TensorFlow 的機器智能領域。您還將對深度學習有良好的洞察,並能夠在現實場景中實施機器學習算法。
#### 您將學到什麼
- 熟悉 TensorFlow 庫的基本特性
- 了解使用 TensorFlow 的線性回歸技術
- 通過實用食譜學習支持向量機(SVM)
- 實施神經網絡以改善預測建模
- 將自然語言處理(NLP)和情感分析應用於您的數據
- 通過實踐食譜掌握 CNN 和 RNN
- 實施梯度提升隨機森林來預測房價
- 將 TensorFlow 投入生產
#### 本書適合誰
如果您是數據科學家或機器學習工程師,並對線性代數、統計學和機器學習有一定了解,本書適合您。如果您想跳過理論,並使用 TensorFlow 建立生產就緒的機器學習模型,而不想閱讀大量的材料,本書適合您。假設您具備一些 Python 編程的背景。
#### 目錄
1. 開始使用 TensorFlow
2. TensorFlow 的方法
3. 線性回歸
4. 支持向量機
5. 最近鄰方法
6. 神經網絡
7. 自然語言處理
8. 卷積神經網絡
9. 循環神經網絡
10. 將 TensorFlow 投入生產
11. 更多 TensorFlow 的應用