Deep Learning for Eeg-Based Brain-Computer Interfaces: Representations, Algorithms and Applications
暫譯: 基於腦電圖的腦機介面深度學習:表示法、演算法與應用

Zhang, Xiang, Yao, Lina

  • 出版商: World Scientific Pub
  • 出版日期: 2021-10-01
  • 售價: $4,020
  • 貴賓價: 9.5$3,819
  • 語言: 英文
  • 頁數: 340
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1786349582
  • ISBN-13: 9781786349583
  • 相關分類: DeepLearningAlgorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Deep Learning for EEG-based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI) in terms of representations, algorithms, and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices.This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI datasets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.

商品描述(中文翻譯)

《基於腦電圖的腦機介面深度學習》是一本令人興奮的書籍,描述了新興的深度學習如何改善腦機介面(BCI)在表示法、演算法和應用方面的未來發展。BCI 通過將個體的腦信號解碼為計算機設備可識別的命令,架起了人類的神經世界與物理世界之間的橋樑。本書提供了常用腦信號的全面總結;系統介紹約 12 種深度學習模型的子類別;對 200 多項在 BCI 領域採用深度學習的最先進研究進行了開闊思維的總結;概述了多個 BCI 應用及深度學習的貢獻,並附有 31 個公共 BCI 數據集。作者還介紹了一組針對當前 BCI 挑戰的創新深度學習演算法,例如穩健的表示學習、跨場景分類和半監督學習。提出了各種基於深度學習的現實世界 BCI 應用,並展示了一些原型。這部作品提出了有效且高效的模型,將為在 BCI 領域工作的學術界和業界人士提供靈感。