Building Recommendation Engines

Suresh Kumar Gorakala

相關主題

商品描述

Key Features

  • A step-by-step guide to building recommendation engines that are personalized, scalable, and real time
  • Get to grips with the best tool available on the market to create recommender systems
  • This hands-on guide shows you how to implement different tools for recommendation engines, and when to use which

Book Description

A recommendation engine (sometimes referred to as a recommender system) is a tool that lets algorithm developers predict what a user may or may not like among a list of given items. Recommender systems have become extremely common in recent years, and are applied in a variety of applications. The most popular ones are movies, music, news, books, research articles, search queries, social tags, and products in general.

The book starts with an introduction to recommendation systems and its applications. You will then start building recommendation engines straight away from the very basics. As you move along, you will learn to build recommender systems with popular frameworks such as R, Python, Spark, Neo4j, and Hadoop. You will get an insight into the pros and cons of each recommendation engine and when to use which recommendation to ensure each pick is the one that suits you the best.

During the course of the book, you will create simple recommendation engine, real-time recommendation engine, scalable recommendation engine, and more. You will familiarize yourselves with various techniques of recommender systems such as collaborative, content-based, and cross-recommendations before getting to know the best practices of building a recommender system towards the end of the book!

What you will learn

  • Build your first recommendation engine
  • Discover the tools needed to build recommendation engines
  • Dive into the various techniques of recommender systems such as collaborative, content-based, and cross-recommendations
  • Create efficient decision-making systems that will ease your work
  • Familiarize yourself with machine learning algorithms in different frameworks
  • Master different versions of recommendation engines from practical code examples
  • Explore various recommender systems and implement them in popular techniques with R, Python, Spark, and others

About the Author

Suresh Kumar Gorakala is a Data scientist focused on Artificial Intelligence. He has professional experience close to 10 years, having worked with various global clients across multiple domains and helped them in solving their business problems using Advanced Big Data Analytics. He has extensively worked on Recommendation Engines, Natural language Processing, Advanced Machine Learning, Graph Databases. He previously co-authored Building a Recommendation System with R for Packt Publishing. He is passionate traveler and is photographer by hobby.

Table of Contents

  1. Introduction to Recommendation Engines
  2. Build Your First Recommendation Engine
  3. Recommendation Engines Explained
  4. Data Mining Techniques Used in Recommendation Engines
  5. Building Collaborative Filtering Recommendation Engines
  6. Building Personalized Recommendation Engines
  7. Building Real-Time Recommendation Engines with Spark
  8. Building Real-Time Recommendations with Neo4j
  9. Building Scalable Recommendation Engines with Mahout
  10. What Next - The Future of Recommendation Engines

商品描述(中文翻譯)

主要特點



  • 逐步指南,建立個性化、可擴展和即時的推薦引擎

  • 熟悉市場上最好的工具,創建推薦系統

  • 這本實用指南將向您展示如何實施不同的推薦引擎工具,以及何時使用哪個工具

書籍描述


推薦引擎(有時稱為推薦系統)是一種讓算法開發人員預測用戶在給定項目列表中可能喜歡或不喜歡的工具。近年來,推薦系統已變得非常普遍,並應用於各種應用領域。最受歡迎的應用領域包括電影、音樂、新聞、書籍、研究文章、搜索查詢、社交標籤和一般產品。


本書首先介紹了推薦系統及其應用。然後,您將從基礎知識開始立即建立推薦引擎。隨著學習的深入,您將學習使用流行框架(如R、Python、Spark、Neo4j和Hadoop)構建推薦系統。您將了解每種推薦引擎的優缺點,以及何時使用哪種推薦引擎,以確保每個選擇都是最適合您的。


在本書的過程中,您將創建簡單的推薦引擎、即時推薦引擎、可擴展的推薦引擎等。在了解最佳實踐之前,您將熟悉協同過濾、基於內容和交叉推薦等推薦系統技術。

您將學到什麼



  • 建立您的第一個推薦引擎

  • 了解構建推薦引擎所需的工具

  • 深入研究協同過濾、基於內容和交叉推薦等推薦系統技術

  • 創建高效的決策系統,簡化您的工作

  • 熟悉不同框架中的機器學習算法

  • 通過實際代碼示例掌握不同版本的推薦引擎

  • 使用R、Python、Spark等流行技術探索各種推薦系統並實施它們

關於作者


Suresh Kumar Gorakala 是一位專注於人工智慧的數據科學家。他擁有近10年的專業經驗,曾與多個全球客戶合作解決其業務問題,並使用先進的大數據分析方法幫助他們。他在推薦引擎、自然語言處理、高級機器學習和圖形數據庫方面有豐富的工作經驗。他曾與Packt Publishing合著《使用R構建推薦系統》一書。他熱愛旅行,並以攝影為嗜好。

目錄



  1. 推薦引擎簡介

  2. 建立您的第一個推薦引擎

  3. 推薦引擎解析

  4. 推薦引擎中使用的數據挖掘技術

  5. 構建協同過濾推薦引擎

  6. 構建個性化推薦引擎

  7. 使用Spark構建即時推薦引擎

  8. 使用Neo4j構建即時推薦引擎

  9. 使用Mahout構建可擴展的推薦引擎

  10. 未來的推薦引擎

最後瀏覽商品 (1)