Data Analysis with R Paperback – December 22, 2015
暫譯: 使用 R 進行資料分析 平裝本 – 2015 年 12 月 22 日
Tony Fischetti
- 出版商: Packt Publishing
- 出版日期: 2015-12-26
- 定價: $1,800
- 售價: 5.0 折 $900
- 語言: 英文
- 頁數: 388
- 裝訂: Paperback
- ISBN: 1785288148
- ISBN-13: 9781785288142
-
相關分類:
R 語言、Data Science
立即出貨(限量) (庫存=1)
買這商品的人也買了...
-
$299Python Power!: The Comprehensive Guide
-
$840Interactive Data Visualization for the Web (Paperback)
-
$1,218R in Action: Data Analysis and Graphics with R, 2/e (Paperback)
-
$1,045$990 -
$825Machine Learning with R, 2/e (Paperback)
-
$360$306 -
$1,690$1,606 -
$1,225Python Data Science Handbook: Essential Tools for Working with Data (Paperback)
-
$505Xcode 實戰:Apple 平臺開發實用技術、技巧及最佳流程
-
$1,660$1,577 -
$1,280R Machine Learning By Example (Paperback)
-
$1,155Data Visualization with Python and JavaScript: Scrape, Clean, Explore & Transform Your Data
-
$2,980$2,831 -
$1,107The Hitchhiker's Guide to Python: Best Practices for Development (Paperback)
-
$990$941 -
$2,040$1,938 -
$490$417 -
$380$323 -
$2,200$2,090 -
$360$180 -
$948Swift Programming: The Big Nerd Ranch Guide, 2/e (Paperback)
-
$390$257 -
$580$458 -
$1,880$1,786 -
$1,170$1,112
相關主題
商品描述
Key Features
- Load, manipulate and analyze data from different sources
- Gain a deeper understanding of fundamentals of applied statistics
- A practical guide to performing data analysis in practice
Book Description
Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. With over 7,000 user contributed packages, it's easy to find support for the latest and greatest algorithms and techniques.
Starting with the basics of R and statistical reasoning, Data Analysis with R dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples.
Packed with engaging problems and exercises, this book begins with a review of R and its syntax. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with “messy data”, large data, communicating results, and facilitating reproducibility.
This book is engineered to be an invaluable resource through many stages of anyone's career as a data analyst.
What you will learn
- Navigate the R environment
- Describe and visualize the behavior of data and relationships between data
- Gain a thorough understanding of statistical reasoning and sampling
- Employ hypothesis tests to draw inferences from your data
- Learn Bayesian methods for estimating parameters
- Perform regression to predict continuous variables
- Apply powerful classification methods to predict categorical data
- Handle missing data gracefully using multiple imputation
- Identify and manage problematic data points
- Employ parallelization and Rcpp to scale your analyses to larger data
- Put best practices into effect to make your job easier and facilitate reproducibility
About the Author
Tony Fischetti is a data scientist at College Factual, where he gets to use R everyday to build personalized rankings and recommender systems. He graduated in cognitive science from Rensselaer Polytechnic Institute, and his thesis was strongly focused on using statistics to study visual short-term memory.
Tony enjoys writing and and contributing to open source software, blogging at http://www.onthelambda.com, writing about himself in third person, and sharing his knowledge using simple, approachable language and engaging examples.
The more traditionally exciting of his daily activities include listening to records, playing the guitar and bass (poorly), weight training, and helping others.
Table of Contents
- RefresheR
- The Shape of Data
- Describing Relationships
- Probability
- Using Data to Reason About the World
- Testing Hypotheses
- Bayesian Methods
- Predicting Continuous Variables
- Predicting Categorical Variables
- Sources of Data
- Dealing with Messy Data
- Dealing with Large Data
- Reproducibility and Best Practices
商品描述(中文翻譯)
**主要特點**
- 從不同來源載入、操作和分析數據
- 深入了解應用統計的基本原理
- 實用指南,幫助在實踐中進行數據分析
**書籍描述**
R 常常是學術界的首選工具,並已深入私營部門,並在一些最先進和成功的企業的生產流程中被廣泛使用。R 的強大和領域特定性使得用戶能夠輕鬆、快速且簡潔地表達複雜的分析。擁有超過 7,000 個用戶貢獻的套件,輕鬆找到最新和最優秀的算法和技術的支持。
本書從 R 和統計推理的基礎開始,深入探討高級預測分析,展示如何將這些技術應用於現實世界的數據,並提供真實的案例。
本書充滿了引人入勝的問題和練習,首先回顧 R 及其語法。接著,掌握應用統計的基本原理,並在此基礎上進行複雜且強大的分析。解決在實踐中進行數據分析的困難,並找到處理「雜亂數據」、大型數據、傳達結果和促進可重現性的解決方案。
本書旨在成為數據分析師職業生涯各個階段的寶貴資源。
**您將學到的內容**
- 瀏覽 R 環境
- 描述和可視化數據的行為及數據之間的關係
- 徹底理解統計推理和抽樣
- 使用假設檢驗從數據中得出推論
- 學習貝葉斯方法以估計參數
- 執行回歸以預測連續變量
- 應用強大的分類方法以預測類別數據
- 使用多重插補優雅地處理缺失數據
- 識別和管理問題數據點
- 使用平行化和 Rcpp 將分析擴展到更大的數據
- 實施最佳實踐以簡化工作並促進可重現性
**關於作者**
**Tony Fischetti** 是 College Factual 的數據科學家,他每天使用 R 來構建個性化排名和推薦系統。他畢業於倫斯勒理工學院的認知科學專業,論文強調使用統計學研究視覺短期記憶。
Tony 喜歡寫作和貢獻開源軟體,並在 http://www.onthelambda.com 上寫博客,使用第三人稱描述自己,並用簡單易懂的語言和引人入勝的例子分享他的知識。
他日常活動中更傳統的興趣包括聽唱片、彈吉他和貝斯(技術不佳)、舉重和幫助他人。
**目錄**
1. RefresheR
2. 數據的形狀
3. 描述關係
4. 機率
5. 使用數據推理世界
6. 測試假設
7. 貝葉斯方法
8. 預測連續變量
9. 預測類別變量
10. 數據來源
11. 處理雜亂數據
12. 處理大型數據
13. 可重現性和最佳實踐