Apache Mahout Essentials
暫譯: Apache Mahout 基礎精要

Jayani Withanawasam

  • 出版商: Packt Publishing
  • 出版日期: 2015-06-22
  • 售價: $1,260
  • 貴賓價: 9.5$1,197
  • 語言: 英文
  • 頁數: 151
  • 裝訂: Paperback
  • ISBN: 1783554991
  • ISBN-13: 9781783554997
  • 海外代購書籍(需單獨結帳)

商品描述

Implement top-notch machine learning algorithms for classification, clustering, and recommendations with Apache Mahout

About This Book

  • Apply machine learning algorithms effectively in production environments with Apache Mahout
  • Gain better insights into large, complex, and scalable datasets
  • Fast-paced tutorial, covering the core concepts of Apache Mahout to implement machine learning on Big Data

Who This Book Is For

If you are a Java developer or data scientist, haven't worked with Apache Mahout before, and want to get up to speed on implementing machine learning on big data, then this is the perfect guide for you.

What You Will Learn

  • Get started with the fundamentals of Big Data, batch, and real-time data processing with an introduction to Mahout and its applications
  • Understand the key machine learning concepts behind algorithms in Apache Mahout
  • Apply machine learning algorithms provided by Apache Mahout in real-world practical scenarios
  • Implement and evaluate widely-used clustering, classification, and recommendation algorithms using Apache Mahout
  • Discover tips and tricks to improve the accuracy and performance of your results
  • Set up Apache Mahout in a production environment with Apache Hadoop
  • Glance at the Spark DSL advancements in Apache Mahout 1.0
  • Provide dynamic and interactive data visualizations for Apache Mahout
  • Build a recommendation engine for real-time use cases and use user-based and item-based recommendation algorithms

In Detail

Apache Mahout is a scalable machine learning library with algorithms for clustering, classification, and recommendations. It empowers users to analyze patterns in large, diverse, and complex datasets faster and more scalably.

This book is an all-inclusive guide to analyzing large and complex datasets using Apache Mahout. It explains complicated but very effective machine learning algorithms simply, in relation to real-world practical examples.

Starting from the fundamental concepts of machine learning and Apache Mahout, this book guides you through Apache Mahout's implementations of machine learning techniques including classification, clustering, and recommendations. During this exciting walkthrough, real-world applications, a diverse range of popular algorithms and their implementations, code examples, evaluation strategies, and best practices are given for each technique. Finally, you will learn vdata visualization techniques for Apache Mahout to bring your data to life.

商品描述(中文翻譯)

使用 Apache Mahout 實現一流的機器學習演算法進行分類、聚類和推薦

本書介紹



  • 在生產環境中有效應用機器學習演算法,使用 Apache Mahout

  • 深入了解大型、複雜且可擴展的數據集

  • 快速上手的教程,涵蓋 Apache Mahout 的核心概念,以在大數據上實現機器學習

本書適合誰閱讀


如果您是 Java 開發人員或數據科學家,之前沒有使用過 Apache Mahout,並希望快速掌握在大數據上實現機器學習的知識,那麼這本書就是為您量身打造的完美指南。

您將學到什麼



  • 從 Mahout 及其應用的介紹開始,了解大數據、批處理和實時數據處理的基本概念

  • 理解 Apache Mahout 中演算法背後的關鍵機器學習概念

  • 在現實世界的實際場景中應用 Apache Mahout 提供的機器學習演算法

  • 使用 Apache Mahout 實現和評估廣泛使用的聚類、分類和推薦演算法

  • 發現提高結果準確性和性能的技巧和竅門

  • 在生產環境中與 Apache Hadoop 一起設置 Apache Mahout

  • 簡要了解 Apache Mahout 1.0 中 Spark DSL 的進展

  • 為 Apache Mahout 提供動態和互動的數據可視化

  • 為實時用例構建推薦引擎,並使用基於用戶和基於項目的推薦演算法

詳細內容


Apache Mahout 是一個可擴展的機器學習庫,提供聚類、分類和推薦的演算法。它使用戶能夠更快、更可擴展地分析大型、多樣化和複雜數據集中的模式。


本書是使用 Apache Mahout 分析大型和複雜數據集的全方位指南。它以簡單的方式解釋了複雜但非常有效的機器學習演算法,並與現實世界的實際例子相關聯。


從機器學習和 Apache Mahout 的基本概念開始,本書將引導您了解 Apache Mahout 在分類、聚類和推薦等機器學習技術的實現。在這個令人興奮的過程中,將為每種技術提供現實世界的應用、各種流行演算法及其實現、代碼示例、評估策略和最佳實踐。最後,您將學習 Apache Mahout 的數據可視化技術,讓您的數據栩栩如生。