Data Science from Scratch with Python: Step-by-Step Guide
暫譯: 從零開始的資料科學:Python逐步指南

Peter Morgan

  • 出版商: W. W. Norton
  • 出版日期: 2018-08-21
  • 售價: $820
  • 貴賓價: 9.5$779
  • 語言: 英文
  • 頁數: 167
  • 裝訂: Paperback
  • ISBN: 1726020681
  • ISBN-13: 9781726020688
  • 相關分類: Python程式語言ScratchData Science
  • 無法訂購

相關主題

商品描述

***** BUY NOW (will soon return to 24.77 $) ***** MONEY BACK GUARANTEE BY AMAZON (See Below FAQ) *****

******Free eBook for customers who purchase the print book from Amazon******


Are you thinking of learning data science from scratch using Python?(For Beginners)

If you are looking for a complete step-by-step guide to data science using Python from scratch, this book is for you. After his great success with his first book “Data Analysis from Scratch with Python”, Peters Morgan publishes his second book focusing now in data science and machine learning. It is considered by practitioners as the easiest guide ever written in this domain.

From AI Sciences Publisher

Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach, which would lead to better mental representations.

Step By Step Guide and Visual Illustrations and Examples

The Book give complete instructions for manipulating, processing, cleaning, modeling and crunching datasets in Python. This is a hands-on guide with practical case studies of data analysis problems effectively. You will learn, pandas, NumPy, IPython, and Jupiter in the Process.

Target Users

Target Users The book is designed for a variety of target audiences. The most suitable users would include:
  • Beginners who want to approach data science, but are too afraid of complex math to start
  • Newbies in computer science techniques and data science
  • Professionals in data science and social sciences
  • Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way
  • Students and academicians, especially those focusing on data science

What’s Inside This Book?

Part 1: Data Science Fundamentals, Concepts and Algorithms

  • Introduction
  • Statistics
  • Probability
  • Bayes’ Theorem and Naïve Bayes Algorithm
  • Asking the Right Question
  • Data Acquisition
  • Data Preparation
  • Data Exploration
  • Data Modelling
  • Data Presentation
  • Supervised Learning Algorithms
  • Unsupervised Learning Algorithms
  • Semi-supervised Learning Algorithms
  • Reinforcement Learning Algorithms
  • Overfitting and Underfitting
  • Correctness
  • The Bias-Variance Trade-off
  • Feature Extraction and Selection

Part 2: Data Science in Practice

  • Overview of Python Programming Language
  • Python Data Science Tools
  • Jupyter Notebook
  • Numerical Python (Numpy)
  • Pandas
  • Scientific Python (Scipy)
  • Matplotlib
  • Scikit-Learn
  • K-Nearest Neighbors
  • Naive Bayes
  • Simple and Multiple Linear Regression
  • Logistic Regression
  • GLM models
  • Decision Trees and Random forest
  • Perceptrons
  • Backpropagation
  • Clustering
  • Natural Language Processing

Frequently Asked Questions

Q: Does this book include everything I need to become a data science expert? A: Unfortunately, no. This book is designed for readers taking their first steps in data science and machine learning using Python and further learning will be required beyond this book to master all aspects.

Q: Can I have a refund if this book doesn’t fit for me? A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email at contact@aisciences.net.

商品描述(中文翻譯)

***** 現在購買(將很快回到 24.77 美元) ***** 亞馬遜提供退款保證(請參見下方常見問題) *****

****** 購買印刷書籍的客戶可獲得免費電子書 ******

# 您是否考慮從零開始學習使用 Python 的資料科學?(適合初學者)

如果您正在尋找一本完整的逐步指南,從零開始使用 Python 學習資料科學,那麼這本書就是為您而寫的。在他第一本書《從零開始的 Python 資料分析》取得巨大成功後,Peters Morgan 發布了他的第二本書,現在專注於資料科學和機器學習。這本書被業界專業人士認為是這個領域中最容易撰寫的指南。

## 來自 AI Sciences 出版社

我們的書籍可能是初學者的最佳選擇;這是一本逐步指南,適合任何想要從零開始學習人工智慧和資料科學的人。為了充分理解將要涵蓋的概念,建議讀者採取實作的方法,這將有助於更好的心理表徵。

## 逐步指南及視覺插圖和範例

本書提供了在 Python 中操作、處理、清理、建模和分析數據集的完整指導。這是一本實作指南,包含有效的資料分析問題的實際案例研究。您將在過程中學習 pandas、NumPy、IPython 和 Jupyter。

## 目標讀者

本書設計針對多種目標讀者。最合適的讀者包括:
- 想接觸資料科學但因為複雜的數學而感到害怕的初學者
- 資料科學和計算機科學技術的新手
- 資料科學和社會科學的專業人士
- 尋找更好方法向學生解釋內容的教授、講師或導師
- 學生和學者,特別是專注於資料科學的人

## 本書內容

**第一部分:資料科學基礎、概念和演算法**
- 介紹
- 統計學
- 機率
- 貝葉斯定理和朴素貝葉斯演算法
- 提出正確的問題
- 數據獲取
- 數據準備
- 數據探索
- 數據建模
- 數據呈現
- 監督式學習演算法
- 非監督式學習演算法
- 半監督式學習演算法
- 強化學習演算法
- 過擬合和欠擬合
- 正確性
- 偏差-方差權衡
- 特徵提取和選擇

**第二部分:資料科學實踐**
- Python 程式語言概述
- Python 資料科學工具
- Jupyter Notebook
- 數值 Python (Numpy)
- Pandas
- 科學 Python (Scipy)
- Matplotlib
- Scikit-Learn
- K-最近鄰
- 朴素貝葉斯
- 簡單和多重線性回歸
- 邏輯回歸
- GLM 模型
- 決策樹和隨機森林
- 感知器
- 反向傳播
- 聚類
- 自然語言處理

## 常見問題

Q: 這本書是否包含我成為資料科學專家的所有內容?
A: 不幸的是,沒有。這本書是為那些使用 Python 在資料科學和機器學習上邁出第一步的讀者設計的,想要掌握所有方面的知識,還需要進一步的學習。

Q: 如果這本書不適合我,我可以退款嗎?
A: 可以,如果您不滿意,亞馬遜會為您退款,欲了解更多有關亞馬遜退款服務的信息,請訪問亞馬遜幫助平台。如果您發送電子郵件至 contact@aisciences.net,我們也很樂意幫助您。

最後瀏覽商品 (20)