The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
暫譯: 機器學習的藝術:使用 R 的實作指南

Matloff, Norman

  • 出版商: No Starch Press
  • 出版日期: 2024-01-09
  • 定價: $1,810
  • 售價: 9.0$1,629
  • 語言: 英文
  • 頁數: 272
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1718502109
  • ISBN-13: 9781718502109
  • 相關分類: Machine Learning
  • 立即出貨 (庫存=1)

相關主題

商品描述

Learn to expertly apply a range of machine learning methods to real data with this practical guide.

Packed with real datasets and practical examples, The Art of Machine Learning will help you develop an intuitive understanding of how and why ML methods work, without the need for advanced math.

As you work through the book, you'll learn how to implement a range of powerful ML techniques, starting with the k-Nearest Neighbors (k-NN) method and random forests, and moving on to gradient boosting, support vector machines (SVMs), neural networks, and more.

With the aid of real datasets, you'll delve into regression models through the use of a bike-sharing dataset, explore decision trees by leveraging New York City taxi data, and dissect parametric methods with baseball player stats. You'll also find expert tips for avoiding common problems, like handling "dirty" or unbalanced data, and how to troubleshoot pitfalls.

You'll also explore:

  • How to deal with large datasets and techniques for dimension reduction
  • Details on how the Bias-Variance Trade-off plays out in specific ML methods
  • Models based on linear relationships, including ridge and LASSO regression
  • Real-world image and text classification and how to handle time series data

Machine learning is an art that requires careful tuning and tweaking. With The Art of Machine Learning as your guide, you'll master the underlying principles of ML that will empower you to effectively use these models, rather than simply provide a few stock actions with limited practical use.

Requirements: A basic understanding of graphs and charts and familiarity with the R programming language

商品描述(中文翻譯)

學習如何專業地將一系列機器學習方法應用於真實數據,這本實用指南將為您提供幫助。

《機器學習的藝術》充滿了真實數據集和實用範例,將幫助您直觀理解機器學習(ML)方法的運作原理及其原因,而無需高深的數學知識。

在閱讀本書的過程中,您將學會如何實現一系列強大的機器學習技術,從 k-最近鄰(k-NN)方法和隨機森林開始,然後進入梯度提升、支持向量機(SVM)、神經網絡等更多技術。

借助真實數據集,您將通過使用共享單車數據集深入了解回歸模型,利用紐約市的計程車數據探索決策樹,並分析棒球運動員的統計數據以了解參數方法。您還會找到避免常見問題的專家建議,例如如何處理「髒」數據或不平衡數據,以及如何排除陷阱。

您還將探索:


  • 如何處理大型數據集及降維技術

  • 偏差-方差權衡在特定機器學習方法中的具體表現

  • 基於線性關係的模型,包括脊迴歸和 LASSO 迴歸

  • 現實世界中的圖像和文本分類以及如何處理時間序列數據


機器學習是一門需要仔細調整和微調的藝術。以《機器學習的藝術》作為您的指南,您將掌握機器學習的基本原則,這將使您能夠有效地使用這些模型,而不僅僅是提供一些有限實用性的標準操作。

要求:對圖表有基本了解,並熟悉 R 程式語言

作者簡介

Norman Matloff is an award-winning professor at the University of California, Davis. Matloff has a PhD in mathematics from UCLA and is the author of The Art of Debugging with GDB, DDD, and Eclipse and The Art of R Programming (both from No Starch Press).

作者簡介(中文翻譯)

諾曼·馬特洛夫是加州大學戴維斯分校的獲獎教授。馬特洛夫擁有加州大學洛杉磯分校的數學博士學位,並且是《使用 GDB、DDD 和 Eclipse 的除錯藝術》以及《R 程式設計的藝術》的作者(均由 No Starch Press 出版)。