Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning (Paperback)
暫譯: Python情感分析的機器學習:構建基於AI的情感分析工具,使用自然語言處理和機器學習(平裝本)

Ramsay, Allan, Ahmad, Tariq

  • 出版商: Packt Publishing
  • 出版日期: 2023-09-28
  • 售價: $1,910
  • 貴賓價: 9.5$1,815
  • 語言: 英文
  • 頁數: 334
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1803240687
  • ISBN-13: 9781803240688
  • 相關分類: Python程式語言Machine Learning
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

相關主題

商品描述

Kickstart your emotion analysis journey with this step-by-step guide to data science success

Key Features

  • Discover the inner workings of the end-to-end emotional analysis workflow
  • Explore the use of various ML models to derive meaningful insights from data
  • Hone your craft by building and tweaking complex emotion analysis models with practical projects
  • Purchase of the print or Kindle book includes a free PDF eBook

Book Description

Artificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system and in turn grow your business exponentially.

With this book, you’ll take your foundational data science skills and grow them in the exciting realm of emotion analysis. By following a practical approach, you’ll turn customer feedback into meaningful insights assisting you in making smart and data-driven business decisions.

The book will help you understand how to preprocess data, build a serviceable dataset, and ensure top-notch data quality. Once you’re set up for success, you’ll explore complex ML techniques, uncovering the concepts of deep neural networks, support vector machines, conditional probabilities, and more. Finally, you’ll acquire practical knowledge using in-depth use cases showing how the experimental results can be transformed into real-life examples and how emotion mining can help track short- and long-term changes in public opinion.

By the end of this book, you’ll be well-equipped to use emotion mining and analysis to drive business decisions.

What you will learn

  • Distinguish between sentiment analysis and emotion analysis
  • Master data preprocessing and ensure high-quality input
  • Expand the use of data sources through data transformation
  • Design models that employ cutting-edge deep learning techniques
  • Discover how to tune your models’ hyperparameters
  • Explore the use of naive Bayes, SVMs, DNNs, and transformers for advanced use cases
  • Practice your newly acquired skills by working on real-world scenarios

Who this book is for

This book is for data scientists and Python developers looking to gain insights into the customer feedback for their product, company, brand, governorship, and more. Basic knowledge of machine learning and Python programming is a must.

商品描述(中文翻譯)

啟動您的情感分析之旅,透過這本逐步指南實現數據科學的成功

主要特點

- 探索端到端情感分析工作流程的內部運作
- 探討使用各種機器學習(ML)模型從數據中獲取有意義的見解
- 通過實際專案來磨練您的技藝,構建和調整複雜的情感分析模型
- 購買印刷版或Kindle書籍可獲得免費PDF電子書

書籍描述

人工智慧和機器學習是未來的技術,現在正是利用這些技術潛力並為您的業務增值的最佳時機。《使用Python進行情感分析的機器學習》幫助您在客戶反饋系統中運用這些尖端技術,從而使您的業務實現指數增長。

通過這本書,您將提升基礎的數據科學技能,並在情感分析的激動人心的領域中進一步發展。通過實用的方法,您將把客戶反饋轉化為有意義的見解,幫助您做出明智且以數據為驅動的商業決策。

本書將幫助您了解如何預處理數據、構建可用的數據集,並確保數據質量一流。一旦您為成功做好準備,您將探索複雜的機器學習技術,揭示深度神經網絡、支持向量機、條件概率等概念。最後,您將獲得實用知識,通過深入的案例展示如何將實驗結果轉化為現實生活中的例子,以及情感挖掘如何幫助追蹤公眾意見的短期和長期變化。

在本書結束時,您將能夠運用情感挖掘和分析來推動商業決策。

您將學到的內容

- 區分情感分析和情緒分析
- 精通數據預處理並確保高質量的輸入
- 通過數據轉換擴展數據來源的使用
- 設計使用尖端深度學習技術的模型
- 探索如何調整模型的超參數
- 探討使用朴素貝葉斯、支持向量機、深度神經網絡和變壓器進行高級用例
- 通過處理現實世界的情境來實踐您新獲得的技能

本書適合誰

本書適合希望深入了解其產品、公司、品牌、政府等的客戶反饋的數據科學家和Python開發者。必須具備基本的機器學習和Python編程知識。

目錄大綱

  1. Foundations
  2. Building and Using a Dataset
  3. Labelling Data
  4. Preprocessing - Stemming, Tagging, and Parsing
  5. Sentiment Lexicons and Vector-Space Models
  6. Naïve Bayes
  7. Support Vector Machines
  8. Neural Networks and Deep Neural Networks
  9. Exploring Transformers
  10. Multiclassifiers
  11. Case Study - The Qatar Blockade

目錄大綱(中文翻譯)


  1. Foundations

  2. Building and Using a Dataset

  3. Labelling Data

  4. Preprocessing - Stemming, Tagging, and Parsing

  5. Sentiment Lexicons and Vector-Space Models

  6. Naïve Bayes

  7. Support Vector Machines

  8. Neural Networks and Deep Neural Networks

  9. Exploring Transformers

  10. Multiclassifiers

  11. Case Study - The Qatar Blockade