Learning and Decision-Making from Rank Data
暫譯: 從排名數據學習與決策制定

Xia, Lirong, Brachman, Ronald, Rossi, Francesca

  • 出版商: Morgan & Claypool
  • 出版日期: 2019-02-06
  • 售價: $2,890
  • 貴賓價: 9.5$2,746
  • 語言: 英文
  • 頁數: 159
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1681734427
  • ISBN-13: 9781681734422
  • 海外代購書籍(需單獨結帳)

商品描述

The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings.

This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators.

This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field.

This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required.

商品描述(中文翻譯)

學習和決策從排名數據中獲取的普遍挑戰出現在智能系統從人類收集偏好和行為數據、從數據中學習,然後利用這些數據幫助人類做出高效、有效和及時的決策的情況下。通常,這些數據以排名的形式表示。

本書調查了在統計、計算和社會經濟學考量下,針對這一挑戰的一些近期進展。我們將涵蓋排名數據的經典統計模型,包括隨機效用模型、基於距離的模型和混合模型。我們將討論並比較經典算法和最先進的算法,例如基於Minorize-Majorization (MM)、期望最大化 (EM)、廣義矩方法 (GMM)、排名打破和張量分解的算法。我們還將介紹原則性的貝葉斯偏好引導框架,用於收集排名數據。最後,我們將檢視統計上理想的決策機制的社會經濟方面,例如貝葉斯估計器。

本書可以在三個方面提供幫助:(1) 對於統計學和機器學習的理論家來說,更好地理解從排名數據學習的考量和注意事項,與從其他類型的數據,特別是基數數據學習相比;(2) 對於實務工作者來說,應用本書涵蓋的算法進行抽樣、學習和聚合;(3) 作為研究生或高年級本科生學習該領域的教科書。

本書要求讀者具備基本的概率、統計和算法知識。對社會選擇的知識也會有所幫助,但不是必需的。