此商品已下架,若仍需天瓏代為查詢或代購書籍,請與門市客服人員聯繫,或 E-mail 至 service@tenlong.com.tw 將有專人為您服務。

Economic Models for Managing Cloud Services
暫譯: 雲端服務管理的經濟模型

Mistry, Sajib, Bouguettaya, Athman, Dong, Hai

  • 出版商: Springer
  • 出版日期: 2019-06-09
  • 售價: $2,220
  • 貴賓價: 9.5$2,109
  • 語言: 英文
  • 頁數: 141
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3319892606
  • ISBN-13: 9783319892603
  • 海外代購書籍(需單獨結帳)

商品描述

The authors introduce both the quantitative and qualitative economic models as optimization tools for the selection of long-term cloud service requests. The economic models fit almost intuitively in the way business is usually done and maximize the profit of a cloud provider for a long-term period.

The authors propose a new multivariate Hidden Markov and Autoregressive Integrated Moving Average (HMM-ARIMA) model to predict various patterns of runtime resource utilization. A heuristic-based Integer Linear Programming (ILP) optimization approach is developed to maximize the runtime resource utilization. It deploys a Dynamic Bayesian Network (DBN) to model the dynamic pricing and long-term operating cost. A new Hybrid Adaptive Genetic Algorithm (HAGA) is proposed that optimizes a non-linear profit function periodically to address the stochastic arrival of requests. Next, the authors explore the Temporal Conditional Preference Network (TempCP-Net) as the qualitative economic model to represent the high-level IaaS business strategies. The temporal qualitative preferences are indexed in a multidimensional k-d tree to efficiently compute the preference ranking at runtime. A three-dimensional Q-learning approach is developed to find an optimal qualitative composition using statistical analysis on historical request patterns.

Finally, the authors propose a new multivariate approach to predict future Quality of Service (QoS) performances of peer service providers to efficiently configure a TempCP-Net. It discusses the experimental results and evaluates the efficiency of the proposed composition framework using Google Cluster data, real-world QoS data, and synthetic data. It also explores the significance of the proposed approach in creating an economically viable and stable cloud market.

This book can be utilized as a useful reference to anyone who is interested in theory, practice, and application of economic models in cloud computing. This book will be an invaluable guide for small and medium entrepreneurs who have invested or plan to invest in cloud infrastructures and services. Overall, this book is suitable for a wide audience that includes students, researchers, and practitioners studying or working in service-oriented computing and cloud computing.

商品描述(中文翻譯)

作者介紹了定量和定性經濟模型作為選擇長期雲服務請求的優化工具。這些經濟模型幾乎直觀地符合商業運作的方式,並最大化雲服務提供商在長期內的利潤。

作者提出了一種新的多變量隱藏馬可夫模型和自回歸整合移動平均模型(HMM-ARIMA),用於預測各種運行時資源利用模式。開發了一種基於啟發式的整數線性規劃(ILP)優化方法,以最大化運行時資源的利用率。它部署了一個動態貝葉斯網絡(DBN)來建模動態定價和長期運營成本。提出了一種新的混合自適應遺傳算法(HAGA),定期優化非線性利潤函數,以應對請求的隨機到達。接下來,作者探討了時間條件偏好網絡(TempCP-Net)作為定性經濟模型,以表示高層次的IaaS商業策略。時間定性偏好被索引在多維k-d樹中,以有效計算運行時的偏好排名。開發了一種三維Q學習方法,利用對歷史請求模式的統計分析來尋找最佳的定性組合。

最後,作者提出了一種新的多變量方法,以預測未來同儕服務提供商的服務質量(QoS)表現,以有效配置TempCP-Net。討論了實驗結果,並使用Google Cluster數據、真實世界的QoS數據和合成數據評估所提出的組合框架的效率。它還探討了所提出的方法在創建經濟可行且穩定的雲市場中的重要性。

本書可作為對雲計算中經濟模型的理論、實踐和應用感興趣的任何人的有用參考。本書將成為已投資或計劃投資雲基礎設施和服務的小型和中型企業家的寶貴指南。總體而言,本書適合廣泛的讀者,包括學習或從事服務導向計算和雲計算的學生、研究人員和實踐者。