The Many Faces of Degeneracy in Conic Optimization (Foundations and Trends(r) in Optimization)
暫譯: 圓錐優化中的多重退化面貌(優化的基礎與趨勢)

Dmitriy Drusvyatskiy, Henry Wolkowicz

  • 出版商: Now Publishers Inc
  • 出版日期: 2017-12-20
  • 售價: $3,010
  • 貴賓價: 9.5$2,860
  • 語言: 英文
  • 頁數: 116
  • 裝訂: Paperback
  • ISBN: 1680833901
  • ISBN-13: 9781680833904
  • 海外代購書籍(需單獨結帳)

商品描述

Slater’s condition – existence of a “strictly feasible solution” – is a common assumption in conic optimization. Without strict feasibility, first-order optimality conditions may be meaningless, the dual problem may yield little information about the primal, and small changes in the data may render the problem infeasible. Hence, failure of strict feasibility can negatively impact off-the-shelf numerical methods, such as primal-dual interior point methods, in particular. New optimization modeling techniques and convex relaxations for hard nonconvex problems have shown that the loss of strict feasibility is a more pronounced phenomenon than has previously been realized.

The Many Faces of Degeneracy in Conic Optimization describes various reasons for the loss of strict feasibility, whether due to poor modeling choices or (more interestingly) rich underlying structure, and discusses ways to cope with it and, in many pronounced cases, how to use it as an advantage. In large part, it emphasizes the facial reduction preprocessing technique due to its mathematical elegance, geometric transparency, and computational potential.

The Many Faces of Degeneracy in Conic Optimization is divided into two parts. Part I presents the necessary theoretical grounding in conic optimization, including basic optimality and duality theory, connections of Slater’s condition to the distance to infeasibility and sensitivity theory, the facial reduction procedure, and the singularity degree. Part II focuses on illustrative examples and applications, including matrix completion problems (semidefinite, low-rank, and Euclidean distance), relaxations of hard combinatorial problems (quadratic assignment and max-cut), and sum of squares relaxations of polynomial optimization problems.

商品描述(中文翻譯)

Slater 的條件——存在「嚴格可行解」——是圓錐優化中的一個常見假設。若無嚴格可行性,則一階最優性條件可能毫無意義,對偶問題可能對原問題提供的資訊有限,而數據的微小變化可能使問題變得不可行。因此,嚴格可行性的失敗可能對現成的數值方法,特別是原對偶內點法,產生負面影響。新的優化建模技術和對於困難非凸問題的凸鬆弛顯示,嚴格可行性的喪失是一種比以往認識到的更為明顯的現象。

《圓錐優化中的多面性退化》描述了嚴格可行性喪失的各種原因,無論是由於不良的建模選擇,還是(更有趣地)豐富的潛在結構,並討論了應對這一問題的方法,以及在許多明顯的情況下,如何將其作為優勢來利用。該書在很大程度上強調了面減少預處理技術,因為它在數學上優雅、幾何上透明且計算潛力巨大。

《圓錐優化中的多面性退化》分為兩部分。第一部分提供了圓錐優化所需的理論基礎,包括基本的最優性和對偶理論、Slater 條件與不可行性距離及敏感性理論的關聯、面減少程序以及奇異度。第二部分專注於示例和應用,包括矩陣補全問題(半正定、低秩和歐幾里得距離)、困難組合問題的鬆弛(二次分配和最大切割)以及多項式優化問題的平方和鬆弛。