Factor Graphs for Robot Perception (Foundations and Trends(r) in Robotics)
暫譯: 機器人感知的因子圖(機器人學的基礎與趨勢)
Frank Dellaert, Michael Kaess
- 出版商: Now Publishers Inc
- 出版日期: 2017-08-15
- 售價: $3,620
- 貴賓價: 9.5 折 $3,439
- 語言: 英文
- 頁數: 162
- 裝訂: Paperback
- ISBN: 168083326X
- ISBN-13: 9781680833263
-
相關分類:
機器人製作 Robots
海外代購書籍(需單獨結帳)
相關主題
商品描述
Factor Graphs for Robot Perception reviews the use of factor graphs for the modeling and solving of large-scale inference problems in robotics. Factor graphs are a family of probabilistic graphical models, other examples of which are Bayesian networks and Markov random fields, well known from the statistical modeling and machine learning literature. They provide a powerful abstraction that gives insight into particular inference problems, making it easier to think about and design solutions, and write modular software to perform the actual inference. This book illustrates their use in the simultaneous localization and mapping problem and other important problems associated with deploying robots in the real world. Factor graphs are introduced as an economical representation within which to formulate the different inference problems, setting the stage for the subsequent sections on practical methods to solve them. The book explains the nonlinear optimization techniques for solving arbitrary nonlinear factor graphs, which requires repeatedly solving large sparse linear systems.
Factor Graphs for Robot Perception will be of interest to students, researchers and practicing roboticists with an interest in the broad impact factor graphs have had, and continue to have, in robot perception.
商品描述(中文翻譯)
《機器人感知的因子圖》回顧了因子圖在機器人學中建模和解決大規模推斷問題的應用。因子圖是一類概率圖模型,其他例子包括貝葉斯網絡和馬爾可夫隨機場,這些在統計建模和機器學習文獻中廣為人知。因子圖提供了一種強大的抽象,能夠深入了解特定的推斷問題,使得思考和設計解決方案變得更容易,並編寫模組化軟體以執行實際的推斷。本書展示了因子圖在同時定位與地圖建立問題及其他與在現實世界中部署機器人相關的重要問題中的應用。因子圖被引入作為一種經濟的表示方式,用於制定不同的推斷問題,為後續解決這些問題的實用方法奠定基礎。本書解釋了解決任意非線性因子圖的非線性優化技術,這需要反覆解決大型稀疏線性系統。
《機器人感知的因子圖》將吸引對因子圖在機器人感知中所產生的廣泛影響及其持續影響感興趣的學生、研究人員和實踐中的機器人專家。