Min-Max Framework for Majorization-Minimization Algorithms in Signal Processing Applications: An Overview
暫譯: 信號處理應用中的主導-最小化算法的最小-最大框架概述

Saini, Astha, Stoica, Petre, Babu, Prabhu

  • 出版商: Now Publishers
  • 出版日期: 2024-11-04
  • 售價: $2,660
  • 貴賓價: 9.5$2,527
  • 語言: 英文
  • 頁數: 90
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1638284660
  • ISBN-13: 9781638284666
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

This monograph presents a theoretical background and a broad introduction to the Min-Max Framework for Majorization-Minimization (MM4MM), an algorithmic methodology for solving minimization problems by formulating them as min-max problems and then employing majorization-minimization. The monograph lays out the mathematical basis of the approach used to reformulate a minimization problem as a min-max problem. With the prerequisites covered, including multiple illustrations of the formulations for convex and non-convex functions, this work serves as a guide for developing MM4MM-based algorithms for solving non-convex optimization problems in various areas of signal processing.

As special cases, the majorization-minimization technique is discussed to solve min-max problems encountered in signal processing applications and min-max problems formulated using the Lagrangian. Detailed examples of using MM4MM in ten signal processing applications such as phase retrieval, source localization, independent vector analysis, beamforming, and optimal sensor placement in wireless sensor networks are presented. The devised MM4MM algorithms are free of hyper-parameters and enjoy the advantages inherited from the use of the majorization-minimization technique such as monotonicity.

商品描述(中文翻譯)

本專著介紹了主要化-最小化(Majorization-Minimization, MM4MM)框架的理論背景和廣泛介紹,這是一種通過將最小化問題表述為最小-最大問題並採用主要化-最小化方法來解決最小化問題的算法方法論。專著闡述了將最小化問題重新表述為最小-最大問題所使用的數學基礎。在涵蓋了必要的前提條件後,包括對凸函數和非凸函數的多個公式化示例,本研究作為開發基於MM4MM的算法以解決各種信號處理領域中的非凸優化問題的指南。

作為特殊情況,討論了主要化-最小化技術以解決信號處理應用中遇到的最小-最大問題以及使用拉格朗日(Lagrangian)公式化的最小-最大問題。提供了在十個信號處理應用中使用MM4MM的詳細示例,例如相位檢索、源定位、獨立向量分析、波束形成和無線傳感器網絡中的最佳傳感器佈局。所設計的MM4MM算法不含超參數,並享有主要化-最小化技術所繼承的優勢,例如單調性。