Outlier Detection for Temporal Data (Synthesis Lectures on Data Mining and Knowledge Discovery)
暫譯: 時間數據的異常檢測(數據挖掘與知識發現綜合講座)
Manish Gupta, Jing Gao, Charu Aggarwal, Jiawei Han
- 出版商: Morgan & Claypool
- 出版日期: 2014-03-01
- 售價: $1,620
- 貴賓價: 9.5 折 $1,539
- 語言: 英文
- 頁數: 130
- 裝訂: Paperback
- ISBN: 1627053751
- ISBN-13: 9781627053754
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
-
$800$632 -
$360$281 -
$1,200$1,140 -
$450$356 -
$450$356 -
$650$507 -
$500$425 -
$1,960$1,921 -
$650$514 -
$520$411 -
$780$616 -
$450$351 -
$600$468 -
$560$442 -
$500$395 -
$3,090$2,936 -
$680$537 -
$1,200$948 -
$680$537 -
$1,900$1,805 -
$780$608 -
$600$468 -
$650$585 -
$3,480$3,306
商品描述
Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc.
Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers.
Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies
商品描述(中文翻譯)
異常值(或稱為離群值)檢測是一個非常廣泛的領域,已在統計學、資料探勘、感測器網路、環境科學、分散式系統、時空資料探勘等多個研究領域中進行研究。最初的異常值檢測研究集中於基於時間序列的異常值(在統計學中)。自那時以來,異常值檢測已在各種數據類型上進行研究,包括高維數據、不確定數據、流數據、網路數據、時間序列數據、空間數據和時空數據。雖然有許多針對一般異常值檢測的教程和調查,但本書專注於時間數據的異常值檢測。大量應用會生成時間數據集。例如,在我們的日常生活中,各種記錄如信用、個人、財務、司法、醫療等,都是時間性的。這強調了對於這類時間數據進行有組織且詳細的異常值研究的必要性。在過去十年中,對於各種形式的時間數據,包括連續數據快照、數據快照系列和數據流,進行了大量研究。除了最初的時間序列研究外,研究人員還專注於豐富的數據形式,包括多個數據流、時空數據、網路數據、社群分佈數據等。
與一般的異常值檢測相比,時間異常值檢測的技術非常不同。在本書中,我們將呈現時間異常值檢測的近期和過去研究的有組織的概述。我們從基礎開始,然後逐步引導讀者了解最先進的異常值檢測技術的主要思想。我們強調時間異常值檢測的重要性,並簡要介紹超越一般異常值檢測的挑戰。接著,我們列出了一個針對時間異常值檢測的技術分類。這些技術大致包括統計技術(如自回歸模型、馬可夫模型、直方圖、神經網路)、基於距離和密度的方法、基於分組的方法(聚類、社群檢測)、基於網路的方法,以及時空異常值檢測方法。我們總結了時間異常值檢測技術應用於發現有趣異常值的廣泛應用案例。
目錄:前言 / 致謝 / 圖片來源 / 介紹與挑戰 / 時間序列和數據序列的異常值檢測 / 數據流的異常值檢測 / 分散式數據流的異常值檢測 / 時空數據的異常值檢測 / 時間網路數據的異常值檢測 / 時間數據異常值檢測的應用 / 結論與研究方向 / 參考文獻 / 作者簡介