Handbook of Missing Data Methodology
暫譯: 缺失數據方法學手冊
Molenberghs, Geert, Fitzmaurice, Garrett, Kenward, Michael G.
- 出版商: CRC
- 出版日期: 2020-12-18
- 售價: $3,090
- 貴賓價: 9.5 折 $2,936
- 語言: 英文
- 頁數: 598
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367739291
- ISBN-13: 9780367739294
-
其他版本:
Handbook of Missing Data Methodology
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
-
$800$632 -
$360$281 -
$1,200$1,140 -
$1,620$1,539 -
$450$356 -
$450$356 -
$650$507 -
$500$425 -
$1,960$1,921 -
$650$514 -
$520$411 -
$780$616 -
$450$351 -
$600$468 -
$560$442 -
$500$395 -
$680$537 -
$1,200$948 -
$680$537 -
$1,900$1,805 -
$780$608 -
$600$468 -
$650$585 -
$3,480$3,306
商品描述
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research.
Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods.
The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters.
Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
商品描述(中文翻譯)
缺失資料幾乎影響每一個學科,因為它使收集資料的統計分析變得複雜。然而,自1990年代以來,在處理缺失資料的統計方法論方面有了重要的發展。由該領域著名的統計學家撰寫的《缺失資料方法論手冊》介紹了許多方法論的進展以及缺失資料方法在實證研究中的最新應用。
手冊分為六個部分,首先建立符號和術語。它回顧了缺失資料機制的一般分類及其對分析的影響,並提供了早期處理缺失資料方法的歷史視角。接下來的三個部分涵蓋了當資料缺失時的各種推論範式,包括似然法和貝葉斯方法;半參數方法,特別強調逆概率加權;以及多重插補方法。
本書的下一部分專注於一系列方法,評估推論對於缺失資料過程的替代、常規不可驗證假設的敏感性。最後一部分討論特殊主題,例如臨床試驗和樣本調查中的缺失資料,以及在缺失資料情境下的模型診斷方法。在每個部分中,介紹提供了有用的背景資料和概述,以為後續章節鋪陳基礎。
涵蓋了既有的和新興的缺失資料方法論,本書為未來的研究奠定了基礎。它為讀者提供了深入研究和實踐應用缺失資料方法的框架。
作者簡介
Geert Molenberghs, Garrett Fitzmaurice, Michael G. Kenward, Anastasios Tsiatis, Geert Verbeke
作者簡介(中文翻譯)
Geert Molenberghs, Garrett Fitzmaurice, Michael G. Kenward, Anastasios Tsiatis, Geert Verbeke