Metric Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)
暫譯: 度量學習(人工智慧與機器學習綜合講座)
Aurélien Bellet, Amaury Habrard, Marc Sebban
- 出版商: Morgan & Claypool
- 出版日期: 2015-01-01
- 售價: $2,410
- 貴賓價: 9.5 折 $2,290
- 語言: 英文
- 頁數: 151
- 裝訂: Paperback
- ISBN: 1627053654
- ISBN-13: 9781627053655
-
相關分類:
人工智慧、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,500$2,375 -
$880$695 -
$1,460Introduction to Fourier Optics, 3/e (Hardcover)
-
$650Ivor Horton's Beginning Visual C++ 2010 (Paperback)
-
$249$197 -
$600$540 -
$2,160$2,052 -
$5,230$4,969 -
$281程序員修煉之道 :從小工到專家 (The Pragmatic Programmer: From Journeyman to Master)
-
$3,600$3,420 -
$580$458 -
$560$437 -
$356C++ 多線程編程實戰
-
$349$332 -
$580$458 -
$403$379 -
$958深度學習
-
$500$390 -
$1,650$1,568 -
$500$390 -
$556雲原生模式
-
$620$527 -
$380$342
商品描述
Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and review methods for more complex settings such as multi-task and semi-supervised learning. Although most of the existing work has focused on numerical data, we cover the literature on metric learning for structured data like strings, trees, graphs and time series. In the more technical part of the book, we present some recent statistical frameworks for analyzing the generalization performance in metric learning and derive results for some of the algorithms presented earlier. Finally, we illustrate the relevance of metric learning in real-world problems through a series of successful applications to computer vision, bioinformatics and information retrieval.
商品描述(中文翻譯)
物件之間的相似性在人的認知過程以及人工系統的識別和分類中扮演著重要角色。如何為特定任務適當地測量這些相似性對於許多機器學習、模式識別和資料探勘方法的性能至關重要。本書專注於度量學習(metric learning),這是一組技術,旨在自動從資料中學習相似性和距離函數,並在過去十年中引起了機器學習及相關領域的廣泛關注。在本書中,我們提供了對度量學習文獻的全面回顧,涵蓋了數值和結構化資料的演算法、理論和應用。我們首先介紹相關的定義和經典的度量函數,以及它們在機器學習和資料探勘中的使用範例。接著,我們回顧各種度量學習演算法,從線性距離和相似性學習的簡單設定開始。我們展示了如何將這些方法擴展到非常大量的訓練資料。為了超越線性情況,我們討論了學習非線性度量或在特徵空間中學習多個線性度量的方法,並回顧了更複雜設定(如多任務和半監督學習)的方法。儘管現有的大多數工作集中在數值資料上,我們也涵蓋了針對結構化資料(如字串、樹、圖和時間序列)的度量學習文獻。在本書的更技術性部分,我們介紹了一些最近的統計框架,用於分析度量學習中的泛化性能,並推導出一些早期介紹的演算法的結果。最後,我們通過一系列成功應用於計算機視覺、生物資訊學和資訊檢索的實際問題,說明了度量學習的相關性。