Content-based Retrieval of Medical Images: Landmarking, Indexing, and Relevance Feedback (Paperback)
暫譯: 基於內容的醫學影像檢索:標記、索引與相關反饋 (平裝本)

Paulo Mazzoncini de Azevedo-Marques, Rangaraj Mandayam Rangayyan

  • 出版商: Morgan & Claypool
  • 出版日期: 2013-01-01
  • 售價: $1,590
  • 貴賓價: 9.5$1,511
  • 語言: 英文
  • 頁數: 144
  • 裝訂: Paperback
  • ISBN: 1627051414
  • ISBN-13: 9781627051415
  • 相關分類: 大數據 Big-data資料庫
  • 立即出貨 (庫存=1)

相關主題

商品描述

Content-based image retrieval (CBIR) is the process of retrieval of images from a database that are similar to a query image, using measures derived from the images themselves, rather than relying on accompanying text or annotation. To achieve CBIR, the contents of the images need to be characterized by quantitative features; the features of the query image are compared with the features of each image in the database and images having high similarity with respect to the query image are retrieved and displayed. CBIR of medical images is a useful tool and could provide radiologists with assistance in the form of a display of relevant past cases. One of the challenging aspects of CBIR is to extract features from the images to represent their visual, diagnostic, or application-specific information content. In this book, methods are presented for preprocessing, segmentation, landmarking, feature extraction, and indexing of mammograms for CBIR. The preprocessing steps include anisotropic diffusion and the Wiener filter to remove noise and perform image enhancement. Techniques are described for segmentation of the breast and fibroglandular disk, including maximum entropy, a moment-preserving method, and Otsu's method. Image processing techniques are described for automatic detection of the nipple and the edge of the pectoral muscle via analysis in the Radon domain. By using the nipple and the pectoral muscle as landmarks, mammograms are divided into their internal, external, upper, and lower parts for further analysis. Methods are presented for feature extraction using texture analysis, shape analysis, granulometric analysis, moments, and statistical measures. The CBIR system presented provides options for retrieval using the Kohonen self-organizing map and the k-nearest-neighbor method. Methods are described for inclusion of expert knowledge to reduce the semantic gap in CBIR, including the query point movement method for relevance feedback (RFb). Analysis of performance is described in terms of precision, recall, and relevance-weighted precision of retrieval. Results of application to a clinical database of mammograms are presented, including the input of expert radiologists into the CBIR and RFb processes. Models are presented for integration of CBIR and computer-aided diagnosis (CAD) with a picture archival and communication system (PACS) for efficient workflow in a hospital.

商品描述(中文翻譯)

內容為基於內容的影像檢索(CBIR)是從資料庫中檢索與查詢影像相似的影像的過程,這一過程是基於影像本身所衍生的度量,而不是依賴於附帶的文字或註解。為了實現CBIR,影像的內容需要通過定量特徵來表徵;查詢影像的特徵與資料庫中每個影像的特徵進行比較,並檢索與查詢影像具有高相似度的影像並顯示出來。醫學影像的CBIR是一個有用的工具,可以為放射科醫生提供相關過去案例的顯示協助。CBIR的一個挑戰性方面是從影像中提取特徵,以表示其視覺、診斷或應用特定的信息內容。本書中介紹了用於乳房X光片的CBIR的預處理、分割、標記、特徵提取和索引的方法。預處理步驟包括各向異性擴散和維納濾波器,以去除噪聲並進行影像增強。描述了乳房和纖維腺體圓盤的分割技術,包括最大熵法、保持矩法和Otsu法。通過在Radon域中的分析,描述了自動檢測乳頭和胸肌邊緣的影像處理技術。利用乳頭和胸肌作為標記,將乳房X光片劃分為內部、外部、上部和下部以進行進一步分析。介紹了使用紋理分析、形狀分析、顆粒度分析、矩和統計度量進行特徵提取的方法。所提出的CBIR系統提供了使用Kohonen自組織映射和k最近鄰方法進行檢索的選項。描述了納入專家知識以減少CBIR中的語義差距的方法,包括用於相關反饋(RFb)的查詢點移動方法。性能分析以檢索的精確度、召回率和相關加權精確度進行描述。應用於乳房X光片臨床資料庫的結果被呈現,包括專家放射科醫生對CBIR和RFb過程的輸入。提出了CBIR與計算機輔助診斷(CAD)及影像存檔和通訊系統(PACS)整合的模型,以實現醫院內的高效工作流程。