Deep Learning and Convolutional Neural Networks for Medical Image Computing: Disease Detection, Organ Segmentation, and Database Construction and Mini
暫譯: 醫學影像計算中的深度學習與卷積神經網絡:疾病檢測、器官分割及數據庫建構與迷你應用
Lu, Le, Wang, Xiaosong, Carneiro, Gustavo
- 出版商: Springer
- 出版日期: 2019-10-01
- 售價: $7,160
- 貴賓價: 9.5 折 $6,802
- 語言: 英文
- 頁數: 390
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3030139689
- ISBN-13: 9783030139681
-
相關分類:
DeepLearning、資料庫
-
其他版本:
Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
海外代購書籍(需單獨結帳)
商品描述
This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book's chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.
商品描述(中文翻譯)
本書回顧了深度學習在高效能穩健疾病檢測、醫學影像計算(放射學和病理學影像模式)中穩健且準確的器官分割,以及大型放射學數據庫的建構與挖掘方面的最新技術。特別聚焦於卷積神經網絡(Convolutional Neural Networks)和循環神經網絡(Recurrent Neural Networks),如長短期記憶網絡(LSTM),並使用眾多實際範例來補充理論。本書的主要特點如下:強調深度神經網絡如何用於解決新的問題和協議,以及應對醫學影像計算中的當前挑戰;提供最新研究和文獻的全面回顧;並描述一系列不同的方法,利用深度學習進行2D和3D醫學影像中的物體或地標檢測任務。此外,本書還探討了使用深度學習原則進行醫學影像語義分割的廣泛技術選擇;介紹了一種針對大型胸部X光影像數據庫的文本和影像深度嵌入的新方法;並討論了如何使用深度學習關係圖來組織來自真實臨床實踐的大量放射學發現,實現基於語義相似性的檢索。
作者簡介
Dr. Le Lu is the Director of Ping An Technology US Research Labs, and an adjunct faculty member at Johns Hopkins University, USA.
Dr. Xiaosong Wang is a Senior Applied Research Scientist at Nvidia Corp., USA.
Dr. Gustavo Carneiro is an Associate Professor at the University of Adelaide, Australia.
Dr. Lin Yang is an Associate Professor at the University of Florida, USA.
作者簡介(中文翻譯)
盧樂博士是平安科技美國研究實驗室的主任,並且是美國約翰霍普金斯大學的兼任教員。
王小松博士是美國Nvidia公司的高級應用研究科學家。
古斯塔沃·卡內羅博士是澳大利亞阿德萊德大學的副教授。
楊林博士是美國佛羅里達大學的副教授。