Graph Algorithms for Data Science: With Examples in Neo4j (Paperback)
暫譯: 數據科學的圖形演算法:以 Neo4j 為例 (平裝本)

Bratanic, Tomaz

  • 出版商: Manning
  • 出版日期: 2024-02-27
  • 售價: $2,170
  • 貴賓價: 9.5$2,062
  • 語言: 英文
  • 頁數: 352
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1617299464
  • ISBN-13: 9781617299469
  • 相關分類: NoSQLAlgorithms-data-structuresData Science
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

相關主題

商品描述

Practical methods for analyzing your data with graphs, revealing hidden connections and new insights.

Graphs are the natural way to represent and understand connected data. This book explores the most important algorithms and techniques for graphs in data science, with concrete advice on implementation and deployment. You don't need any graph experience to start benefiting from this insightful guide. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.

In Graph Algorithms for Data Science you will learn:

 

  • Labeled-property graph modeling
  • Constructing a graph from structured data such as CSV or SQL
  • NLP techniques to construct a graph from unstructured data
  • Cypher query language syntax to manipulate data and extract insights
  • Social network analysis algorithms like PageRank and community detection
  • How to translate graph structure to a ML model input with node embedding models
  • Using graph features in node classification and link prediction workflows


Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications like machine learning, fraud detection, and business data analysis. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more.

Foreword by Michael Hunger.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology

A graph, put simply, is a network of connected data. Graphs are an efficient way to identify and explore the significant relationships naturally occurring within a dataset. This book presents the most important algorithms for graph data science with examples from machine learning, business applications, natural language processing, and more.

About the book

Graph Algorithms for Data Science shows you how to construct and analyze graphs from structured and unstructured data. In it, you'll learn to apply graph algorithms like PageRank, community detection/clustering, and knowledge graph models by putting each new algorithm to work in a hands-on data project. This cutting-edge book also demonstrates how you can create graphs that optimize input for AI models using node embedding.

What's inside

 

  • Creating knowledge graphs
  • Node classification and link prediction workflows
  • NLP techniques for graph construction


About the reader

For data scientists who know machine learning basics. Examples use the Cypher query language, which is explained in the book.

About the author

Tomaz Bratanic works at the intersection of graphs and machine learning.

Arturo Geigel was the technical editor for this book.

Table of Contents

PART 1 INTRODUCTION TO GRAPHS
1 Graphs and network science: An introduction
2 Representing network structure: Designing your first graph model
PART 2 SOCIAL NETWORK ANALYSIS
3 Your first steps with Cypher query language
4 Exploratory graph analysis
5 Introduction to social network analysis
6 Projecting monopartite networks
7 Inferring co-occurrence networks based on bipartite networks
8 Constructing a nearest neighbor similarity network
PART 3 GRAPH MACHINE LEARNING
9 Node embeddings and classification
10 Link prediction
11 Knowledge graph completion
12 Constructing a graph using natural language processing technique

商品描述(中文翻譯)

**實用的方法來分析您的數據,透過圖形揭示隱藏的連結和新的見解。**

圖形是表示和理解連接數據的自然方式。本書探討了數據科學中圖形的最重要算法和技術,並提供了具體的實施和部署建議。您不需要任何圖形經驗就可以開始從這本富有洞察力的指南中受益。這些強大的圖形算法以清晰、無行話的文字和插圖進行解釋,使其易於應用於您自己的項目。

在《數據科學的圖形算法》中,您將學到:

- 標籤屬性圖建模
- 從結構化數據(如 CSV 或 SQL)構建圖形
- 使用自然語言處理(NLP)技術從非結構化數據構建圖形
- 操作數據和提取見解的 Cypher 查詢語言語法
- 社交網絡分析算法,如 PageRank 和社群檢測
- 如何將圖形結構轉換為機器學習模型的輸入,使用節點嵌入模型
- 在節點分類和連結預測工作流程中使用圖形特徵

《數據科學的圖形算法》是一本針對圖形數據在機器學習、詐騙檢測和商業數據分析等應用中的實用指南。書中充滿了有趣且有趣的項目,展示了圖形的各種細節。您將通過分析 Twitter、使用 NLP 技術構建圖形等方式獲得實用技能。

前言由 Michael Hunger 撰寫。

購買印刷版書籍可獲得 Manning Publications 提供的免費 PDF、Kindle 和 ePub 格式電子書。

**關於技術**

簡單來說,圖形是一個連接數據的網絡。圖形是一種有效的方式來識別和探索數據集中自然發生的重要關係。本書介紹了圖形數據科學中最重要的算法,並提供來自機器學習、商業應用、自然語言處理等的示例。

**關於本書**

《數據科學的圖形算法》教您如何從結構化和非結構化數據構建和分析圖形。在書中,您將學會應用圖形算法,如 PageRank、社群檢測/聚類和知識圖模型,並在實際數據項目中運用每個新算法。這本前沿的書籍還展示了如何使用節點嵌入創建優化 AI 模型輸入的圖形。

**內容概覽**

- 創建知識圖
- 節點分類和連結預測工作流程
- 用於圖形構建的 NLP 技術

**關於讀者**

適合了解機器學習基礎的數據科學家。示例使用 Cypher 查詢語言,書中有詳細解釋。

**關於作者**

**Tomaz Bratanic** 在圖形和機器學習的交集工作。

**Arturo Geigel** 是本書的技術編輯。

**目錄**

第一部分 圖形介紹
1 圖形與網絡科學:簡介
2 表示網絡結構:設計您的第一個圖形模型
第二部分 社交網絡分析
3 您的第一步 Cypher 查詢語言
4 探索性圖形分析
5 社交網絡分析簡介
6 投影單部網絡
7 基於雙部網絡推斷共現網絡
8 構建最近鄰相似性網絡
第三部分 圖形機器學習
9 節點嵌入和分類
10 連結預測
11 知識圖完成
12 使用自然語言處理技術構建圖形

作者簡介

Tomaz Bratanic is a network scientist at heart, working at the intersection of graphs and machine learning. He has applied these graph techniques to projects in various domains including fraud detection, biomedicine, business-oriented analytics, and recommendations.

作者簡介(中文翻譯)

Tomaz Bratanic 是一位網路科學家,專注於圖形與機器學習的交集。他將這些圖形技術應用於多個領域的專案,包括詐騙檢測、生物醫學、商業分析以及推薦系統。