Deep Learning with Pytorch (Paperback) (深度學習與Pytorch)

Stevens, Eli, Antiga, Luca

買這商品的人也買了...

相關主題

商品描述

Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you, and your deep learning skills, become more sophisticated.

Deep Learning with PyTorch teaches you how to implement deep learning algorithms with Python and PyTorch. This book takes you into a fascinating case study: building an algorithm capable of detecting malignant lung tumors using CT scans. As the authors guide you through this real example, you'll discover just how effective and fun PyTorch can be.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

商品描述(中文翻譯)

每隔一天,我們都會聽到利用深度學習的新方法:改進醫學影像、準確的信用卡詐騙檢測、長期天氣預報等等。PyTorch將這些超能力交到你手中,提供一個舒適的Python環境,讓你能夠快速入門,並隨著你的深度學習技能的提升而成長。

《Deep Learning with PyTorch》教你如何使用Python和PyTorch實現深度學習算法。本書帶你進入一個迷人的案例研究:使用CT掃描構建一個能夠檢測惡性肺腫瘤的算法。當作者引導你通過這個真實案例時,你將發現PyTorch的效果和樂趣。

購買印刷版書籍還包括一本免費的電子書,格式為PDF、Kindle和ePub,由Manning Publications提供。

作者簡介

Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software.

Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch.

作者簡介(中文翻譯)

Eli Stevens在過去的15年中在矽谷擔任軟體工程師,並在過去的7年中擔任一家製造醫療設備軟體的初創公司的首席技術官。

Luca Antiga是一家位於意大利貝加莫的人工智能工程公司的聯合創始人兼首席執行官,並且是PyTorch的常駐貢獻者。

目錄大綱

Part 1 Part 1. Core PyTorch
1 Introducing Deep Learning and the PyTorch Library
2 Pre-Trained Networks
3 It Starts with a Tensor
4 Real-World Data Representation Using Tensors
5 The Mechanics of Learning
6 Using A Neural Network To Fit the Data
7 Telling Birds from Airplanes: Learning from Images
8 Using Convolutions To Generalize


Part 2 Part 2. Learning from Images in the Real-World: Early Detection of Lung Cancer
9 Using PyTorch To Fight Cancer
10 Ready, Dataset, Go!
11 Training A Classification Model To Detect Suspected Tumors
12 Monitoring Metrics: Precision, Recall, and Pretty Pictures
13 Using Segmentation To Find Suspected Nodules
14 End-to-end nodule analysis, and where to go next


Part 3 Part 3. Deployment
15 Deploying to production
 

目錄大綱(中文翻譯)

第一部分 第1部分. PyTorch核心
1. 介紹深度學習和PyTorch庫
2. 預訓練網絡
3. 從張量開始
4. 使用張量表示現實世界的數據
5. 學習的機制
6. 使用神經網絡擬合數據
7. 從圖像中識別鳥和飛機:從圖像中學習
8. 使用卷積進行泛化

第二部分 第2部分. 在現實世界中從圖像中學習:早期檢測肺癌
9. 使用PyTorch對抗癌症
10. 準備、數據集、開始!
11. 訓練分類模型以檢測可疑腫瘤
12. 監控指標:精確度、召回率和漂亮的圖片
13. 使用分割找到可疑結節
14. 結節分析的端到端處理,以及下一步該怎麼做

第三部分 第3部分. 部署
15. 部署到生產環境