Real-World Machine Learning
暫譯: 實務機器學習
Henrik Brink, Joseph Richards, Mark Fetherolf
- 出版商: Manning
- 出版日期: 2016-09-29
- 售價: $1,720
- 貴賓價: 9.5 折 $1,634
- 語言: 英文
- 頁數: 264
- 裝訂: Paperback
- ISBN: 1617291927
- ISBN-13: 9781617291920
-
相關分類:
Machine Learning
-
相關翻譯:
實用機器學習 (Real-world Machine Learning) (簡中版)
立即出貨
買這商品的人也買了...
-
$580$452 -
$520$199 -
$1,155Linux Firewalls: Enhancing Security with nftables and Beyond, 4/e (Paperback)
-
$1,000$950 -
$1,140$1,083 -
$650$514 -
$780$616 -
$250鳳凰計畫:一個 IT計畫的傳奇故事 (The Phoenix Project : A Novel about IT, DevOps, and Helping your business win)(沙盤特別版)
-
$420$332 -
$580$452 -
$580$458 -
$380$300 -
$480$379 -
$1,617Deep Learning (Hardcover)
-
$580$458 -
$580$458 -
$500$395 -
$360$238 -
$580$458 -
$768$730 -
$780$616 -
$403Tensorflow:實戰Google深度學習框架
-
$650$429 -
$500$425 -
$450$356
商品描述
Summary
Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand.
About the Book
Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems.
What's Inside
Predicting future behavior
Performance evaluation and optimization
Analyzing sentiment and making recommendations
About the Reader
No prior machine learning experience assumed. Readers should know Python.
About the Authors
Henrik Brink, Joseph Richards and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning.
Table of Contents
THE MACHINE-LEARNING WORKFLOW
What is machine learning?
Real-world data
Modeling and prediction
Model evaluation and optimization
Basic feature engineering
PRACTICAL APPLICATION
Example: NYC taxi data
Advanced feature engineering
Advanced NLP example: movie review sentiment
Scaling machine-learning workflows
Example: digital display advertising
商品描述(中文翻譯)
摘要
《實務機器學習》是一本實用指南,旨在教導在職開發者機器學習專案執行的藝術。它不會讓你過度接觸學術理論和複雜數學,而是介紹機器學習的日常實踐,幫助你成功構建和部署強大的機器學習系統。
購買印刷版書籍可獲得Manning Publications提供的免費電子書,格式包括PDF、Kindle和ePub。
關於技術
機器學習系統幫助你在數據中發現有價值的見解和模式,這些是你用傳統方法無法識別的。在現實世界中,機器學習技術為你提供了一種識別趨勢、預測行為和做出基於事實的建議的方法。這是一個熱門且不斷增長的領域,熟悉機器學習的開發者需求量大。
關於本書
《實務機器學習》將教你成為成功的機器學習從業者所需的概念和技術,而不會讓你過度接觸抽象理論和複雜數學。通過在Python中處理立即相關的範例,你將建立數據獲取和建模、分類和回歸的技能。你還將探索模型驗證、優化、可擴展性和實時流處理等最重要的任務。完成後,你將能夠成功構建、部署和維護自己的強大機器學習系統。
內容概覽
預測未來行為
性能評估和優化
情感分析和建議生成
關於讀者
不假設有任何機器學習經驗。讀者應該了解Python。
關於作者
Henrik Brink、Joseph Richards和Mark Fetherolf是經驗豐富的數據科學家,從事機器學習的日常實踐。
目錄
機器學習工作流程
什麼是機器學習?
現實世界中的數據
建模與預測
模型評估與優化
基本特徵工程
實務應用
範例:紐約市計程車數據
進階特徵工程
進階自然語言處理範例:電影評論情感
擴展機器學習工作流程
範例:數位顯示廣告