Practical Data Science with R (Paperback)
Nina Zumel, John Mount
- 出版商: Manning
- 出版日期: 2014-04-22
- 定價: $1,650
- 售價: 5.0 折 $825
- 語言: 英文
- 頁數: 389
- 裝訂: Paperback
- ISBN: 1617291560
- ISBN-13: 9781617291562
-
相關分類:
R 語言、Data Science
-
相關翻譯:
數據科學:理論、方法與R語言實踐 (簡中版)
-
其他版本:
Practical Data Science with R, 2/e (Paperback)
買這商品的人也買了...
-
$550$468 -
$680$510 -
$650$553 -
$360$281 -
$580$452 -
$1,615Big Data: Principles and best practices of scalable realtime data systems (Paperback)
-
$400$380 -
$480$379 -
$1,830$1,739 -
$480$408 -
$680$578 -
$550$413 -
$2,360$2,242 -
$580$493 -
$480$408 -
$1,680An Introduction to Statistical Learning: With Applications in R (Hardcover)
-
$360$252 -
$780$585 -
$500$375 -
$540$405 -
$650$507 -
$290$261 -
$1,408Mastering Data Analysis with R (Paperback)
-
$990Simulation for Data Science with R
-
$720$569
相關主題
商品描述
Summary
Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Book
Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day data science tasks without a lot of academic theory or advanced mathematics.
Practical Data Science with R shows you how to apply the R programming language and useful statistical techniques to everyday business situations. Using examples from marketing, business intelligence, and decision support, it shows you how to design experiments (such as A/B tests), build predictive models, and present results to audiences of all levels.
This book is accessible to readers without a background in data science. Some familiarity with basic statistics, R, or another scripting language is assumed.
What's Inside
- Data science for the business professional
- Statistical analysis using the R language
- Project lifecycle, from planning to delivery
- Numerous instantly familiar use cases
- Keys to effective data presentations
About the Authors
Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com.
Table of Contents
PART 1 INTRODUCTION TO DATA SCIENCE
PART 2 MODELING METHODS
PART 3 DELIVERING RESULTS
- The data science process
- Loading data into R
- Exploring data
- Managing data
- Choosing and evaluating models
- Memorization methods
- Linear and logistic regression
- Unsupervised methods
- Exploring advanced methods
- Documentation and deployment
- Producing effective presentations
商品描述(中文翻譯)
摘要
使用R進行實用數據科學不負其名。它解釋了基本原理,沒有理論上的废话,直接跳到你在收集、整理和分析對你的業務成功至關重要的數據時會遇到的真實用例。你將應用R編程語言和統計分析技術,通過基於市場營銷、商業智能和決策支持的詳細解釋的示例。
購買印刷版書籍將包括Manning Publications提供的PDF、Kindle和ePub格式的免費電子書。
關於本書
商業分析師和開發人員越來越多地收集、整理、分析和報告關鍵的業務數據。R語言及其相關工具提供了一種直接的方式來應對日常數據科學任務,而不需要太多學術理論或高級數學知識。
使用R進行實用數據科學向您展示如何應用R編程語言和有用的統計技術處理日常業務情境。通過市場營銷、商業智能和決策支持的示例,它向您展示如何設計實驗(例如A/B測試)、構建預測模型並向各級觀眾呈現結果。
本書適合沒有數據科學背景的讀者閱讀。假設讀者對基本統計學、R或其他腳本語言有一定的熟悉。
內容簡介
- 針對商業專業人士的數據科學
- 使用R語言進行統計分析
- 從計劃到交付的項目生命周期
- 多個瞬間熟悉的使用案例
- 有效數據呈現的關鍵
關於作者
Nina Zumel和John Mount是一家位於舊金山的數據科學咨詢公司的共同創始人。他們都擁有卡內基梅隆大學的博士學位,並在win-vector.com上以統計學、概率論和計算機科學為主題撰寫博客。
目錄
第1部分 數據科學簡介
第2部分 建模方法
第3部分 交付結果
- 數據科學過程
- 將數據加載到R中
- 探索數據
- 管理數據
- 選擇和評估模型
- 記憶方法
- 線性和邏輯回歸
- 無監督方法
- 探索高級方法
- 文檔和部署
- 製作有效的演示文稿