Machine Learning: a Concise Introduction (Hardcover)
暫譯: 機器學習:簡明介紹 (精裝版)

Steven W. Knox

買這商品的人也買了...

商品描述

AN INTRODUCTION TO MACHINE LEARNING THAT INCLUDES THE FUNDAMENTAL TECHNIQUES, METHODS, AND APPLICATIONS

Machine Learning: a Concise Introduction offers a comprehensive introduction to the core concepts, approaches, and applications of machine learning. The author—an expert in the field—presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. The design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods. Understanding these principles leads to more flexible and successful applications. Machine Learning: a Concise Introduction also includes methods for optimization, risk estimation, and model selection— essential elements of most applied projects. This important resource:

  • Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods
  • Presents R source code which shows how to apply and interpret many of the techniques covered
  • Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions
  • Contains useful information for effectively communicating with clients

A volume in the popular Wiley Series in Probability and Statistics, Machine Learning: a Concise Introduction offers the practical information needed for an understanding of the methods and application of machine learning.

STEVEN W. KNOX holds a Ph.D. in Mathematics from the University of Illinois and an M.S. in Statistics from Carnegie Mellon University. He has over twenty years’ experience in using Machine Learning, Statistics, and Mathematics to solve real-world problems. He currently serves as Technical Director of Mathematics Research and Senior Advocate for Data Science at the National Security Agency.

商品描述(中文翻譯)

機器學習簡介:涵蓋基本技術、方法與應用

機器學習:簡明介紹 提供了機器學習核心概念、方法與應用的全面介紹。作者——該領域的專家——呈現了解決分類、回歸、聚類、密度估計和降維等應用問題的基本思想、術語和技術。強調了這些技術背後的設計原則,包括偏差-方差權衡及其對集成方法設計的影響。理解這些原則有助於實現更靈活和成功的應用。機器學習:簡明介紹 也包括優化、風險估計和模型選擇的方法——這些是大多數應用項目的基本要素。這本重要的資源:


  • 通過一個單一的運行範例來說明許多分類方法,突顯方法之間的相似性和差異

  • 提供 R 語言的源代碼,展示如何應用和解釋許多涵蓋的技術

  • 包含許多深思熟慮的練習,作為文本的不可或缺部分,並附有選定解答的附錄

  • 提供有效與客戶溝通的有用資訊

作為受歡迎的 Wiley 機率與統計系列中的一冊,機器學習簡明介紹 提供了理解機器學習方法和應用所需的實用資訊。

STEVEN W. KNOX 擁有伊利諾伊大學的數學博士學位和卡內基梅隆大學的統計碩士學位。他在使用機器學習、統計和數學解決現實世界問題方面擁有超過二十年的經驗。目前,他擔任國家安全局數學研究技術總監和數據科學高級倡導者。