Learning From Data (Hardcover)
暫譯: 從數據中學習 (精裝版)
Yaser S. Abu-Mostafa , Malik Magdon-Ismail , Hsuan-Tien Lin
- 出版商: AMLBook
- 出版日期: 2012-03-26
- 定價: $1,200
- 售價: 9.5 折 $1,140
- 語言: 英文
- 頁數: 213
- 裝訂: Hardcover
- ISBN: 1600490069
- ISBN-13: 9781600490064 銷售排行: 👍 2018 年度 英文書 銷售排行 第 15 名
👍 2017 年度 英文書 銷售排行 第 5 名
🥈 2017/6 英文書 銷售排行 第 2 名
🥉 2017/5 英文書 銷售排行 第 3 名
🥇 2017/2 英文書 銷售排行 第 1 名
🥉 2016 年度 英文書 銷售排行 第 3 名
立即出貨
買這商品的人也買了...
-
$620$490 -
$590$466 -
$580$452 -
$400$380 -
$940$700 -
$680$578 -
$360$252 -
$780$616 -
$400$316 -
$550$468 -
$1,362Introduction to Machine Learning, 3/e (Hardcover)
-
$780$616 -
$360$284 -
$648$616 -
$580$452 -
$1,617Deep Learning (Hardcover)
-
$500$395 -
$360$180 -
$580$458 -
$403Tensorflow:實戰Google深度學習框架
-
$680$537 -
$590$460 -
$390$257 -
$958深度學習
-
$580$458
相關主題
商品描述
<內容簡介>
Machine learning allows computational systems to adaptively improve their performance with experience accumulated from the observed data. Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover.
Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems.
Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own.
The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
<章節目錄>
Ch1: The Learning Problem
Ch2: Training versus Testing
Ch3: The Linear Model
Ch4: Overfitting
Ch5: Three Learning Principles
商品描述(中文翻譯)
內容簡介
機器學習使計算系統能夠根據從觀察數據中累積的經驗自適應地改善其性能。其技術廣泛應用於工程、科學、金融和商業。本書旨在為機器學習提供一個短期課程。這是一個短期課程,而不是匆忙的課程。根據十多年教授這門材料的經驗,我們提煉出我們認為每位學習者應該了解的核心主題。我們選擇了「從數據中學習」這個標題,忠實地描述了這門學科的內容,並特別強調以故事的方式來涵蓋這些主題。我們希望讀者能夠通過通讀本書來學習這門學科的所有基本知識。
從數據中學習有明確的理論和實踐路徑。在本書中,我們平衡了理論與實踐、數學與啟發式。我們的納入標準是相關性。建立學習概念框架的理論被納入,影響實際學習系統性能的啟發式也同樣被納入。
從數據中學習是一個非常動態的領域。一些熱門技術和理論有時會變成潮流,而另一些則獲得認可並成為該領域的一部分。我們在本書中強調的是必要的基本知識,這為任何學習數據的人提供了堅實的基礎,使他們能夠進一步探索其他技術和理論,或許還能貢獻自己的見解。
作者是加州理工學院(Caltech)、倫斯勒理工學院(RPI)和國立台灣大學(NTU)的教授,本書是他們受歡迎的機器學習課程的主要教材。作者還與金融和商業公司在機器學習應用方面進行廣泛的諮詢,並在機器學習競賽中領導獲勝團隊。
章節目錄
Ch1: 學習問題
Ch2: 訓練與測試
Ch3: 線性模型
Ch4: 過擬合
Ch5: 三個學習原則