Introduction to Machine Learning, 3/e (Hardcover)
暫譯: 機器學習導論 (第三版)

Ethem Alpaydin

買這商品的人也買了...

相關主題

商品描述

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.

Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

商品描述(中文翻譯)

機器學習的目標是編程電腦利用示例數據或過去經驗來解決特定問題。目前已經存在許多成功的機器學習應用,包括分析過去銷售數據以預測客戶行為的系統、優化機器人行為以便以最少資源完成任務,以及從生物信息學數據中提取知識。《機器學習導論》是一本全面的教科書,涵蓋了通常不包括在入門機器學習書籍中的廣泛主題。主題包括監督學習、貝葉斯決策理論、參數法、半參數法和非參數法、多變量分析、隱馬爾可夫模型、強化學習、核機器、圖形模型、貝葉斯估計和統計檢驗。

機器學習正迅速成為計算機科學學生在畢業前必須掌握的技能。《機器學習導論》第三版反映了這一變化,增加了對初學者的支持,包括針對練習的選定解答和額外的示例數據集(代碼可在線獲得)。其他重大變更包括對異常檢測的討論;感知器和支持向量機的排序算法;矩陣分解和光譜方法;距離估計;新的核算法;在多層感知器中的深度學習;以及貝葉斯方法的非參數方法。所有學習算法都進行了解釋,以便學生能夠輕鬆地從書中的方程式轉移到計算機程序。這本書適合高年級本科生和研究生使用,對於關心機器學習方法應用的專業人士也會有興趣。