Time Series Clustering and Classification (Chapman & Hall/CRC Computer Science & Data Analysis)
暫譯: 時間序列聚類與分類(Chapman & Hall/CRC計算機科學與數據分析)

Elizabeth Ann Maharaj, Pierpaolo D'Urso, Jorge Caiado

  • 出版商: Chapman and Hall/CRC
  • 出版日期: 2019-04-12
  • 售價: $6,780
  • 貴賓價: 9.5$6,441
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Hardcover
  • ISBN: 1498773214
  • ISBN-13: 9781498773218
  • 相關分類: Data ScienceComputer-Science
  • 海外代購書籍(需單獨結帳)

商品描述

The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data.

Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students.

Features

  • Provides an overview of the methods and applications of pattern recognition of time series
  • Covers a wide range of techniques, including unsupervised and supervised approaches
  • Includes a range of real examples from medicine, finance, environmental science, and more
  • R and MATLAB code, and relevant data sets are available on a supplementary website

商品描述(中文翻譯)

人工智慧和機器學習時代的開始為數據分析師、統計學家、數學家、計量經濟學家、計算機科學家及其他許多人帶來了新的挑戰和機遇。這些技術的根本在於用於聚類和分類不同類型的大型數據集(包括時間序列數據)的算法和方法。

時間序列聚類與分類 包含了基於觀察、基於特徵和基於模型的傳統及模糊聚類方法、基於特徵和基於模型的分類方法,以及機器學習方法的相關發展。它為研究人員和學生提供了廣泛且自成體系的技術概述。

特色

  • 提供時間序列模式識別方法和應用的概述

  • 涵蓋了包括無監督和有監督方法在內的廣泛技術

  • 包括來自醫學、金融、環境科學等領域的多個實際範例

  • R 和 MATLAB 代碼,以及相關數據集可在補充的 網站 上獲得