Analysis of Distributional Data
暫譯: 分佈數據分析

Brito, Paula, Dias, Sónia

  • 出版商: CRC
  • 出版日期: 2022-05-06
  • 售價: $4,910
  • 貴賓價: 9.5$4,665
  • 語言: 英文
  • 頁數: 376
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1498725457
  • ISBN-13: 9781498725453
  • 其他版本: Analysis of Distributional Data
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In a time when increasingly larger and complex data collections are being produced, it is clear that new and adaptive forms of data representation and analysis have to be conceived and implemented. Distributional data, i.e., data where a distribution rather than a single value is recorded for each descriptor, on each unit, come into this framework. Distributional data may result from the aggregation of large amounts of open/collected/generated data, or it may be directly available in a structured or unstructured form, describing the variability of some features. This book provides models and methods for the representation, analysis, interpretation, and organization of distributional data, taking into account its specific nature, and not relying on a reduction to single values, to be conform to classical paradigms.

Conceived as an edited book, gathering contributions from multiple authors, the book presents alternative representations and analysis' methods for distributional data of different types, and in particular,
-Uni- and bi-variate descriptive statistics for distributional data
-Clustering and classification methodologies
-Methods for the representation in low-dimensional spaces
-Regression models and forecasting approaches for distribution-valued variables

Furthermore, the different chapters
-Feature applications to show how the proposed methods work in practice, and how results are to be interpreted,
-Often provide information about available software.

The methodologies presented in this book constitute cutting-edge developments for stakeholders from all domains who produce and analyse large amounts of complex data, to be analysed in the form of distributions. The book is hence of interest for companies operating not only in the area of data analytics, but also on logistics, energy and finance. It also concerns national statistical institutes and other institutions at European and international level, where microdata is aggregated to preserve confidentiality and allow for analysis at the appropriate regional level. Academics will find in the analysis of distributional data a challenging up-to-date field of research.

商品描述(中文翻譯)

在當前越來越多且複雜的數據集合被產生的時代,顯然需要構思和實施新的適應性數據表示和分析形式。分佈數據,即對每個描述符在每個單位上記錄分佈而非單一值的數據,正是這一框架的一部分。分佈數據可能源於大量開放/收集/生成數據的聚合,或者以結構化或非結構化的形式直接可用,描述某些特徵的變異性。本書提供了針對分佈數據的表示、分析、解釋和組織的模型和方法,考慮到其特定性質,而不依賴於將其簡化為單一值,以符合傳統範式。

本書作為一本編輯書籍,匯集了多位作者的貢獻,展示了不同類型的分佈數據的替代表示和分析方法,特別是:
- 單變量和雙變量的描述性統計
- 聚類和分類方法
- 在低維空間中的表示方法
- 針對分佈值變量的回歸模型和預測方法

此外,各章節還包含:
- 特徵應用,展示所提方法在實踐中的運作方式,以及如何解釋結果,
- 通常提供有關可用軟體的信息。

本書中提出的方法論構成了針對所有領域利益相關者的前沿發展,這些利益相關者生產和分析大量複雜數據,並以分佈的形式進行分析。因此,本書對於不僅在數據分析領域運作的公司,還包括物流、能源和金融等領域的公司都具有興趣。它同樣涉及國家統計機構及其他歐洲和國際層面的機構,這些機構聚合微數據以保護機密性並允許在適當的區域層面進行分析。學術界將在分佈數據的分析中發現一個具有挑戰性的最新研究領域。

作者簡介

Paula Brito is a Professor at the Faculty of Economics of the University of Porto, and a member of the Artificial Intelligence and Decision Support Research Group (LIAAD) of INESC TEC, Portugal. She holds a doctorate degree in Applied Mathematics from the University Paris Dauphine, and an Habilitation in Applied Mathematics from the University of Porto. Her current research focuses on the analysis of multidimensional complex data, known as symbolic data, for which she develops statistical approaches and multivariate analysis methodologies. In this context, she has been involved in two European research projects. Paula Brito has been president of the International Association for Statistical Computing (IASC-ISI) in 2013-2015, and of the Portuguese Association for Classification and Data Analysis for the term 2021-2023. She has been invited speaker at several international conferences, and is a regularly member of international program committees. Paula Brito has been chair of COMPSTAT 2008 and will co-chair the IFCS 2022 conference.

Sónia Dias is a Professor in the area of Mathematics at the School of Technology and Management of the Polytechnic Institute of Viana do Castelo, and a member of the Laboratory in Artificial Intelligence and Decision Support (LIAAD) of INESC TEC, Portugal. She holds a PhD in Applied Mathematics from the University of Porto (2014). Her main scientific areas of research are Data Analysis, Symbolic Data Analysis (analysis of multidimensional complex data) and Statistical/Mathematical Applications. Under this context, she has participated in several conferences and published articles in international journals and proceedings. She was a member of the organizing committee of the international Symbolic Data Analysis Workshop - SDA2018 and is a member of the organizing committee of the IFCS 2022 conference.

作者簡介(中文翻譯)

**保拉·布里托**是波爾圖大學經濟學院的教授,也是葡萄牙INESC TEC的人工智慧與決策支援研究小組(LIAAD)的成員。她擁有巴黎多芬大學的應用數學博士學位,以及波爾圖大學的應用數學資格認證。她目前的研究重點是分析多維複雜數據,這些數據被稱為符號數據,並為此開發統計方法和多變量分析方法。在這個背景下,她參與了兩個歐洲研究項目。保拉·布里托在2013年至2015年間擔任國際統計計算協會(IASC-ISI)會長,並在2021年至2023年期間擔任葡萄牙分類與數據分析協會會長。她曾在多個國際會議上擔任邀請演講者,並定期擔任國際程序委員會的成員。保拉·布里托曾擔任COMPSTAT 2008的主席,並將共同主持IFCS 2022會議。

**索尼亞·迪亞斯**是維亞納杜卡斯特羅理工學院技術與管理學院的數學教授,也是葡萄牙INESC TEC的人工智慧與決策支援實驗室(LIAAD)的成員。她於2014年獲得波爾圖大學的應用數學博士學位。她的主要科學研究領域包括數據分析、符號數據分析(多維複雜數據的分析)以及統計/數學應用。在這個背景下,她參加了多個會議並在國際期刊和會議論文集中發表文章。她曾是國際符號數據分析研討會 - SDA2018的組織委員會成員,並且是IFCS 2022會議的組織委員會成員。