Statistical Analysis of fMRI Data (Hardcover)
暫譯: 功能性磁共振影像數據的統計分析 (精裝版)

F. Gregory Ashby

買這商品的人也買了...

相關主題

商品描述

Functional magnetic resonance imaging (fMRI), which allows researchers to observe neural activity in the human brain noninvasively, has revolutionized the scientific study of the mind. An fMRI experiment produces massive amounts of highly complex data; researchers face significant challenges in analyzing the data they collect. This book offers an overview of the most widely used statistical methods of analyzing fMRI data. Every step is covered, from preprocessing to advanced methods for assessing functional connectivity. The goal is not to describe which buttons to push in the popular software packages but to help readers understand the basic underlying logic, the assumptions, the strengths and weaknesses, and the appropriateness of each method.

The book covers all of the important current topics in fMRI data analysis, including the relation of the fMRI BOLD (blood oxygen-level dependent) response to neural activation; basic analyses done in virtually every fMRI article -- preprocessing, constructing statistical parametrical maps using the general linear model, solving the multiple comparison problem, and group analyses; the most popular methods for assessing functional connectivity -- coherence analysis and Granger causality; two widely used multivariate approaches, principal components analysis and independent component analysis; and a brief survey of other current fMRI methods. The necessary mathematics is explained at a conceptual level, but in enough detail to allow mathematically sophisticated readers to gain more than a purely conceptual understanding. The book also includes short examples of Matlab code that implement many of the methods described; an appendix offers an introduction to basic Matlab matrix algebra commands (as well as a tutorial on matrix algebra). A second appendix introduces multivariate probability distributions.

商品描述(中文翻譯)

功能性磁共振成像(fMRI)使研究人員能夠非侵入性地觀察人類大腦中的神經活動,徹底改變了對心智的科學研究。fMRI 實驗產生大量高度複雜的數據;研究人員在分析所收集的數據時面臨重大挑戰。本書提供了分析 fMRI 數據最常用的統計方法的概述。每一步都涵蓋,包括預處理到評估功能連接的高級方法。目標不是描述在流行軟體包中按下哪些按鈕,而是幫助讀者理解每種方法的基本邏輯、假設、優缺點及其適用性。

本書涵蓋了 fMRI 數據分析中所有重要的當前主題,包括 fMRI BOLD(血氧水平依賴)反應與神經激活的關係;幾乎每篇 fMRI 文章中進行的基本分析——預處理、使用一般線性模型構建統計參數圖、解決多重比較問題和群體分析;評估功能連接的最流行方法——相干性分析和 Granger 因果關係;兩種廣泛使用的多變量方法,主成分分析和獨立成分分析;以及對其他當前 fMRI 方法的簡要調查。必要的數學以概念層面進行解釋,但詳細到足以讓數學上有深厚背景的讀者獲得超越純概念的理解。本書還包括實現許多所描述方法的 Matlab 代碼的簡短示例;附錄提供了基本 Matlab 矩陣代數命令的介紹(以及矩陣代數的教程)。第二個附錄介紹了多變量概率分佈。