Proactive Data Mining with Decision Trees (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 主動式資料探勘與決策樹 (SpringerBriefs 電機與計算機工程系列)
Haim Dahan
- 出版商: Springer
- 出版日期: 2014-02-15
- 售價: $2,320
- 貴賓價: 9.5 折 $2,204
- 語言: 英文
- 頁數: 100
- 裝訂: Paperback
- ISBN: 1493905384
- ISBN-13: 9781493905386
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting criterion for decision trees, termed maximal-utility, which maximizes the potential for enhancing profitability in the output tree. Two real-world case studies, one of a leading wireless operator and the other of a major security company, are also included and demonstrate how applying the proactive approach to classification tasks can solve business problems. Proactive Data Mining with Decision Trees is intended for researchers, practitioners and advanced-level students.
商品描述(中文翻譯)
本書探討了一種主動且以領域為驅動的分類任務方法。這種新穎的主動數據挖掘方法不僅能夠誘導出一個用於預測或解釋現象的模型,還利用特定的問題/領域知識來建議具體行動,以實現目標屬性值的最佳變化。特別地,作者建議了一種針對分類樹的領域驅動主動方法的具體實現。本書的核心思想是將觀察值從樹的一個分支移動到另一個分支。它引入了一種新的決策樹分割標準,稱為最大效用(maximal-utility),該標準最大化了在輸出樹中增強盈利潛力的可能性。本書還包括兩個真實案例研究,一個是領先的無線運營商,另一個是主要的安全公司,展示了如何將主動方法應用於分類任務以解決商業問題。《使用決策樹的主動數據挖掘》旨在為研究人員、實務工作者和高級學生提供參考。