Stream Data Mining: Algorithms and Their Probabilistic Properties
暫譯: 串流資料挖掘:演算法及其機率特性

Rutkowski, Leszek, Jaworski, Maciej, Duda, Piotr

  • 出版商: Springer
  • 出版日期: 2019-06-04
  • 售價: $4,540
  • 貴賓價: 9.5$4,313
  • 語言: 英文
  • 頁數: 342
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030139646
  • ISBN-13: 9783030139643
  • 相關分類: Algorithms-data-structuresData-mining
  • 海外代購書籍(需單獨結帳)

商品描述

This book presents a unique approach to stream data mining. Unlike the vast majority of previous approaches, which are largely based on heuristics, it highlights methods and algorithms that are mathematically justified. First, it describes how to adapt static decision trees to accommodate data streams; in this regard, new splitting criteria are developed to guarantee that they are asymptotically equivalent to the classical batch tree. Moreover, new decision trees are designed, leading to the original concept of hybrid trees. In turn, nonparametric techniques based on Parzen kernels and orthogonal series are employed to address concept drift in the problem of non-stationary regressions and classification in a time-varying environment. Lastly, an extremely challenging problem that involves designing ensembles and automatically choosing their sizes is described and solved. Given its scope, the book is intended for a professional audience of researchers and practitioners who deal with stream data, e.g. in telecommunication, banking, and sensor networks

商品描述(中文翻譯)

本書提出了一種獨特的串流數據挖掘方法。與大多數以啟發式為主的先前方法不同,本書強調了數學上有根據的方法和算法。首先,它描述了如何調整靜態決策樹以適應數據流;在這方面,開發了新的分割標準,以保證它們在漸進意義上等同於經典的批量樹。此外,設計了新的決策樹,導致了混合樹的原始概念。接著,基於 Parzen 核和正交級數的非參數技術被用來解決非穩態回歸和時間變化環境中的分類問題中的概念漂移。最後,描述並解決了一個極具挑戰性的問題,即設計集成模型並自動選擇其大小。考慮到其範疇,本書旨在針對處理串流數據的專業讀者,包括電信、銀行和傳感器網絡等領域的研究人員和從業者。