A 1D Spectral Image Validation/Verification Metric for Fingerprints
暫譯: 一維光譜影像指紋驗證/驗證指標

nist

  • 出版商: CreateSpace Independ
  • 出版日期: 2013-11-12
  • 售價: $750
  • 貴賓價: 9.5$713
  • 語言: 英文
  • 頁數: 54
  • 裝訂: Paperback
  • ISBN: 149374769X
  • ISBN-13: 9781493747696
  • 海外代購書籍(需單獨結帳)

商品描述

Image validation and verification are important functions in the acquisition of fingerprint images from live-scan devices and for assessing and maintaining the fidelity of fingerprint image databases. In addition to law enforcement, such databases are used by NIST and others to test automated fingerprint identification system (AFIS) algorithms and to aide the advance of this technology. Image screening by visual inspection is time consuming. We propose a computational mechanism by which to screen fingerprint image databases for specimens improperly scanned from fingerprint cards, guide the auto-capture process and flag auto-capture failures, identify non-fingerprint images that may have been included in a database, and recognize aberrant sampling of fingerprint images. The scheme reduces an input image to a 1-dimensional power spectrum that makes explicit the characteristic ridge structure of the fingerprint that on a global basis differentiates it from most other images. The magnitude of the distinctive spectral feature, related directly to the distinctness of the level 1 ridge flow, provides a primary diagnostic indicator of the presence of a fingerprint image. The frequency of the spectral feature provides a secondary classification metric and, on a coarse level, indicates the scan sample rate of the fingerprint image. Test results are reported in which the Spectral Image Validation and Verification (SIVV) utility is applied to a variety of databases composed of fingerprint and non-fingerprint images. An equal error rate (EER) for false positive and false negative classifications of 10% is achieved for fingerprints mixed with a variety of non-fingerprint images and an EER of around 7% is found with a dataset containing fingerprints mixed with other biometric samples, i.e. face and iris images.

商品描述(中文翻譯)

影像驗證和確認是從活體掃描設備獲取指紋影像以及評估和維護指紋影像資料庫忠實度的重要功能。除了執法機構外,這些資料庫還被NIST等機構用來測試自動指紋識別系統(AFIS)演算法,並促進這項技術的進步。透過目視檢查進行影像篩選是耗時的。我們提出了一種計算機機制,用於篩選從指紋卡不當掃描的指紋影像資料庫,指導自動捕捉過程並標記自動捕捉失敗,識別可能已包含在資料庫中的非指紋影像,以及識別指紋影像的異常取樣。該方案將輸入影像簡化為一維功率譜,明確顯示指紋的特徵脊結構,這在全球範圍內使其與大多數其他影像區分開來。該特徵的幅度與第1級脊流的獨特性直接相關,提供了指紋影像存在的主要診斷指標。該特徵的頻率提供了次要分類指標,並在粗略層面上指示指紋影像的掃描樣本率。測試結果報告中,應用光譜影像驗證和確認(SIVV)工具於由指紋和非指紋影像組成的各種資料庫。對於混合各種非指紋影像的指紋,達到了10%的假陽性和假陰性分類的等錯誤率(EER),而在包含指紋與其他生物特徵樣本(即臉部和虹膜影像)的數據集中,發現約7%的EER。